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1 Summary

During the period 1 July 1984 - 31 January 1990, the research under Grant AFOSR-84-0181 has

been concerned with binary parallel optical computing architectures with particular attention

to cellular logic and symbolic substitution for pattern recognition and numerical operations.

Our approach has been to experimentally implement binary optical cellular logic processors and

interconnection arrays; define an instruction set and software suited to optical computing systems;

and to study generalizations of optical cellular logic processors such as the cellular hypercube. The

results include the experimental implementation of a 54-gate binary optical cellular logic processor

with instruction decoders, input/output, memory and test/branch functions; the completion of a

binary image algebra (BIA) description of cellular logic, image analysis and symbolic operations;

and the development of binary image algebra algorithms for scale and shift invariant pattern

recognition. Additional work concerns the relationship of parallel computation paradigms to

optical computing and halftone screen techniques for implementing general nonlinear functions.
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2 Research Progress

This section summarizes research progress and accomplishments for the period 1 July 1984 -

31 January 1990 on Grant AFOSR-84-0181 for Nonlinear Real-Time Optical Signal Processing.

These results are discussed separately in the sections that follow.

2.1 Digital Optical Parallel Computing Systems

We have continued work on an experimental sequential optical binary parallel architecture that is

constructed from an array of binary optical switching elements (NOR gates) with interconnections

done by a computer-generated hologram. We examined new binary array spatial light modulators

(SLM's), high efficiency, high space-bandwidth product (SBWP) interconnection holograms, and

compact reflection versions of the general architecture with the intent of building a larger demon-

stration system with greater capabilities. We have studied improved methods of providing the

interconnections in these systems by the use of hybrid digital/analog (facet) holograms. A final

area of study has been to examine in detail algorithms that are well-suited for implementation

on the parallel binary architectures described previously. We have defined several methods for

building binary and arithmetic cellular logic processors and have determined some limits due to

hologram complexity, gate density, etc.

A reprint describing the general types of system under consideration is included for reference.

the paper, by B.K. Jenkins and A.A. Sawchuk, is "Binary Optical Computing Arcitectures",

Optics News, Vol. 12, No. 4, pp. 25-26, 1986.
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magne two possible paths for this development: If we do this successfully, then we ae left with
olution or a revolution. e/on of how to process all this information w are
For the moment, optical components are used - ving. The possible answers may lie in area

i gly in predominantly electronic computers. op- of ne network models.
e ting mode of the optical devices is di y the A ne network is a very large colecti of neu-
e ting structure of the computer which in has rons (p ps 100 billion of them), with neuron

shaped by the characteristics of se uctor being con to thousands of others capabili-
de s. As optics is increasingly used in puters, ty to store Ie amounts of informai and the abili-
it wi perhaps become apparent that traditional ty to get to thiinformation quickly 'efficiently are
advan ges of optical computing can used to en- what give neu networks their mputational pow-

hance e capability of these optical ponents. er. This is accomp *shed by stori g the information in
For i tance, if optical memories common- the interconnection among neurons, which is a

place, it 'I be inevitable that paral I access of these most ingenious way avoid enecks in trying to
memories will be attempted in o r to get to the get to the stored i o
stored info on faster, which i probably create The problems that neu networks are particularly
a communi btion bottleneck in a ditional comput- good at (recognition of I s and speech, classiFza-
ing structure. This may bring a t the need for more ton of patterns, and ocia ns) are problems that
extensive glo communicatio between the memo- electronic computers parti larly poor at solving.
ry and the p ssing element in the computer, and There is an excellen match n the capabilities
this, in turn, require an ptical solution for the and strengths of *cs and ne networks. There-

communication poblem that e optical memory cre- fore, if we can some insights the work of
ated. biologists and rs who study neu networks, this

Evolutionary posses o this type are certain to can prove very elpful in our effort to ign optical
occur. The only ques on is ow far they will go. Will computers.
enough optical dec optical techniques even- A natural patbility has emerged en the
tually be inserte an nic computer to allow requireme of problems typically encoun in
us to call this machine optical computer rather artificial *telligence, the ways that such p lems -
than an electronic com r with some optical com- are solv by a neural network, and the capabiliti .

ponents? optics e development of optical computers that
I don't think the an er this question is impor- ploi is compatibility is one of the exciting an

tant What is "mpo= is the ization that if optical ising prospects for the futr of the field
components ar u "n co .rs, then there is a
tremendous Zt for ement in the perfor-
mance through cal comp ing" ideas and tech-niques. a Bia opc l

The evolutio path to oi computing, as out-
lined above, s ething not planned by
anybody. Most us working onptical computers
imagine their d lopment as a re ution; we start
with a new tec ology (optics), and nd new ways to
solve problem that are suited to this logy, and Arcited u
weset of important proble to solve thatwfnda ne, set o mpr t

present corn ters have a hard time th. The suc-
cessful pat owards the development o uch radical- BY B. KEiTH JENKINS AND
ly new co puters is, needless to say, n rtain and ALEXANDER M. SAWCHUK
not yet u versally agreed upon. SIGNAL AND IMAGE PROCESSING INSTTUTE

In or r to be competitive with the ell-en- UNVERSIr OF SOUTMiEP CALIFORNIA
trench semiconductor technology, it is rtant WS ANGELES, CALF.
that w identify clearly the comparatively a vanta-
geous eatures of optics and try to make the use
possi le of them. Global communication and di ca-
paci for dense storage of information are two ohe inary parallel optical computing architectures
stg suits of optics. We ought to be able to d D differ greatly from traditional optical analog
w s to store large amounts of information optical , and numerical processors. The potential advan-

d also have ways to retrieve this information ve tages of these architecutres are;
ickly using optical communication. a They offer flexibility of operations-numerical,

OPTICS NEWS a APRIL 1986



• ! The figure shows one concept of an optical sequen-
tial logic system with global interconnections. An ex-
perimental system based on this concept has been

Binary parallel optical computing built The gate army at the bottom is a 2,D army of
architectures differ greatly from optical NOR gates formed on the surface of a liquid-

crystal light valve or other spatial light modulator hav-
traditional optical analog and ing an army of optically activated switching elements.

numerical procmsom they offer the The light valve operates in transmission, so that the
possibility of high throughput and inputs are applied on the left side of the device (hid-

den in the figure), while the outputs are obtained onprocessing speed with arrays offast the right side of the device.
optical switches that are being With this arrangement, optical signal inputs and

developed. outputs are accessible in parallel. An interconnection
unit (which is currently a computer generated holo-
gram) connects gate outputs to gate inputs in a very
general way and forms the "wiring." The gate inter-
connections can be global or local with equal ease,
because a third dimension is utilized and optical sig-

symbolic or logical, compared to analog or discrete nals can propagate through each other with minimal
multilevel processors; effective interaction. Components such as flip-flops,

a They have binary digital accuracy and dynamic registers, memory, instruction decoders, arithmetic
range; logic units, and central processing units are defined

n They offer computing architectures very different by a fixed wiring pattern. The resulting machine
from electronic very large scale integration (VLSI): could, in principle, be general-purpose or special-
they permit global interconnections and parallel in- purpose, and could be programmable.
put-output compared to the local interconnections, The interconnection wiring can be altered by
clock-skew problems, pin-in/pin-out and bus limita- changing the hologram; thus a binary optical comput-
tions of very large scale integration (VLSI); er with dynamically reconfigurable wiring is a pogsi-

a They utilize the 2-D parallel nature of optical de- bility. A wide variety of hologram encoding tech-
vice arrays and low interaction of optical signals for niques can be utilized, and the gate array may contain
interconnections in 3-D; and -105 or 106 gates. One important aspect of this system

n They offer the possibility of high throughout and is that it can be configured as a binary parallel coin-
processing speed with arrays of fast optical switches puter, which is very different from traditional archi-
that are being developed. tectures.

An experimental version of th system in the figure
has been implemented. The system is an all-optical
16-gate digital sequential circuit, including clock and
flip-flop, implemented using a Hughes liquid-crystal
light valve. The system contains a high-resolution
computer-generated hologram for gate interconnec-

mlefcoo.clc,,o unit tion, which was made on an electron-beam integrated
(opute generated o) circuit mask writer. Many different optical systems

using different types of computer-generated holo-
grams can be used for the interconnections; current
research is concerned with comparing various alter-
natives and improving hologram resolution and flexi-
bility.

Several computationally demanding practical prob-
inpus "lems such as parallel digital image processing and im-
(de or p araollel age analysis are well-matched to this architecture. In
poi gate 1ro Output the future, a large (W106 gates) 2-D array of binary

(biuid crystal lot vv, or ,hestold tce) switching (threshold) or bistable devices, preferably
all-optical (optical input and output) could be used in
the system, which could provide nanosecond switch-

An optical digital computing architecture with global ing times. Many alternative technologies exist; they
interconnectiom, must be compared and evaluated.

OPTICS NEWS w APRIL 1986



2.2 Optical Cellular Logic Processors

We have continued work on optical cellular logic processors (CLP's) and other parallel digital

processing arch.tectures that are well-suited for implementation on the sequential optical archi-

tecture described in the previous section. Optical CLP's are well matched to this architecture

because they are a 2-D, page oriented array of individual processors located at every pixel of a

large image. The attached paper by B.K. Jenkins and A.A. Sawchuk, "Optical Cellular Logic

Architectures for Image Processing", from IEEE Computer Society Workshop on Computer Ar-

chitectures for Pattern Analysis and Image Database Management, November 1985, summarizes

some of these concepts. Work in progress includes studies on the implementation of cellular hy-

percubes and pyramids, which are not feasible for electronic VLSI, but offer important advantages

for improved image processing.
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OPTICAL CELLULAR LOGIC ARCHITECTURES FOR IMAGE PROCESSING

B.K. Jenkins and A.A. Sawchuk

Signal and Image Processing Institute

Electrical Engineering - Systems Department

University of Southern California
Los Angples, California 90089-0272

ABSTRACT demonstrated an optical logic system that includes these ele-
ments; it allows large numbers of interconnections between

A digital optical processing System Consisting Of Optical gates. It is described in this section. We also point out that
gates and optical interconnections is described. Its concept other digital optical -processing systems have been described

has been demonstrated experimentally. The implementation I[G
of an optical cellular logic processor is considered. Optical
systems for interconnections are given, and the architectural In our system a 2-D array of gates is combined with an

characteristics of such optical cellular logic machines are dis- optical holographic interconnection system to create a gen-

cussed and compared with electronic machines. eral optical sequential logic system. Its inherent 3-D struc-
ture provides for a high degree of interconnection flexibility.
The idea is to take the array of gate outputs and send it

I. INTRODUCTION through a holographic system back to the array of gate
inputs (Fig. 1). The holographic system connects the output

In the optical processing community there has been a of each gate to inputs of other gates, effectively wiring up a
substantial &mount of research in the area of optical image circuit. For ease of manufacture, the holograms can be gen-
processing and pattern recognition. Most of the systems to erated by (electronic) computer and written out using a

date have been analog, and have the potential of processing computer plotting device. We have experimentally demon-

large amounts of data in parallel and at high speeds. How- strated the concept of this system with a 16-gate circuit. In

ever, their analog nature limits both the accuracy and the this section we will discuss the gate array and interconnec-
range of operations that can be achieved with a given sys- tion system.
tem. A digital optical system holds the promise of alleviat-
ing these restrictions while maintaining some of the advan- 2-D arrays of optical gates demonstrated to date have

tages of optical systems. A cellular logic processor is one one drawback or another that preclude their use in a practi-

possible use of such a digital optical computer. cal, competitive optical optical logic system. While current

The current interest in digital optical computing can be devices can implement 106 to 10 e gates in one array, in most

largely attributable to two developments: (1) recent progress cases the major drawback is the extremely slow speed of the

in optical materials and devices useful for the implementa- devices. (Typical response times are > I is.) Recent pro-

tion of gates, including improvements in size, pote gress in the area of optical bistability, however, provides
nfatrabs, ncasdi ityrovem s a nd ese pential hope for fast optical logic systems. To date their demons-

manufacturability, eaadabity, tad especially switching trations have been primarily on individual (single gate) dev-
energy; and (2) the realization that optical systems could ices, but in principle they can be used for 2-D arrays as well.
have significant advantages over electronic computers in cer- Gate switching times on the order of as have been demon-
tain application areas. These advantages are due primarily strated 121, and there is potential for even much raster gates
to the optical interconnections, and include the abilities to (3,41 (although other considerations such as power may limit

implement large numbers of interconnecting lines with little the usable response time in a system to - ns). Many of

or no regard for their length. This stems primarily from the these devices are all optical (intrinsic) in that the signal is

fact that electrons interact at a distance whereas photons do not converted to electrons and then back to photons again

not. These advantages will be discussed in more detail in order to obtain the nonlinearity. This is one of the rea-

below. sons for their speed advantage. For a review of optical bis-

In this paper we will review some of our work in digital tability, the reader is referred to [5,61.
optical computing, and discuss the possible optical We have previously described three different optical

implementation of a cellular logic processor Lad some of its interconnection systems for interconnecting the gates [71.

architectural characteristics. A general review of digital opt- All of them use holograms in conjunction with free-space

ical computing is given in Ref. 1. propagation. Their characteristics differ and this manifests

itself in the kinds of circuits and processors that can be

I. OPTICAL LOGIC SYSTEM implemented most efficiently with each system. Here we dis-

An optical logic system can be built out of optical gates cuss one of the systems, which is a hybrid space-

and interconnections. If these interconnections include a variant/space-invariant system. This system has the most

provision for feedback, then clocks and memory can con- general applicability and is the most pertinent to cellular

structed in addition to combinatorial logic. These are the logic processors. A review of all three systems can be found

minimum hardware requirements to be able to implement, in in Ref 8.

principle, arbitrary digital processing operations. We have The hybrid interconnection system represents a bas-

IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Image

Database Management, November 1985
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Fig. 1. Functional block diagram of sequential optical Fig. 2. Example of only one interconnection pattern
logic system. being used for all gate outputs (M=I).

set approach to interconnections. The optical system con-
sists of two holograms and two or more lenses. The idea is III. COMPARISON OF DESIGN CONSTRAINTS
to define a finite number, M, of distinct interconnection pat- The design of processors and computers in any technol-
terns, and then assemble the circuit using only these M pat- ogy is constrained by the inherent characteristics of the
terns. A circuit with only one interconnection pattern is technology. In this section we compare some of these con-
shown in Fig. 2 - all gate outputs have exactly. the same straints for electronic and optical systems and discuss how
interconnectionpattern. We generally expect that 1 << M they affect system architectures.
<< N, where N is the number of gates. Each different Since the development of electronic LSI and VLSI, the
interconnection pattern is essentially stored in only one cost of individual gates has constituted only a minor factor
place on the hologram, and many gate outputs can use this in the overall system cost function. The major concern has
same interconnection in a non-interfering manner. In addi- become internal and external communications [11,12]. The
tion, once the necessary set of interconnection patterns is internal wiring network affects the amount of active chip
defined, it may be possible to determine a smaller basis set area available for gates; in current systems it is common for
of new interconnection patterns that still achieves all inter- more than 7096 of the chip area to be devoted to intercon-
connections [91. If so, M is reduced even more. The number nections 113). Because of the resistance and parasitic capaci-
of gates and interconnection patterns that are implemented tance associated with each on-chip wire, the response time of
determine the complexity of the holograms. The hologram a gate and the propagation delay of a wire both become
complexity that can be achieved is limited by the capabili- functions of the length of the wire. Timing and clock skew
ties of recording devices (e.g., computer plotting devices), become problems because of the differing wire lengths
Calculations indicate that with current plotting devices, if [14,15). (Although the wire resistance can be reduced by
there are M = 50 interconnection patterns, then N - le process technology, e.g., using thick metal layers, it appears
gates can be interconnected (7]. Increasing M will decrease that the wire lengths will still be a limiting factor in the sys-
N, such that MN is constant. (We expect future gate arrays tem timing considerations [1.) Another restriction related
to have - 10e, possibly up to 107, gates.) Thus with this to interconnections is the limited number of pin-outs which
approach the designer has some minor limitations on the becomes more apparent as the number of gates per chip
interconnections which can be used, but he has a potentially increases. One result of these restrictions is the need to
large number of gates at his disposal. minimize the number and length of interconnections.

Of course, with a large enough M, any circuit can be For optical logic systems, the major design considera-
implemented. However, the potential of this system can be tions are admittedly not so well defined as for VLSI, but it
exploited more fully by implementing circuits with a high is clear that the cost function is much different. In particu-
degree of regularity or symmetry. An example is a processor lar, most of the communication costs affecting VLSI design
array. Typically interconnections between processing ele- are not associated with optical systems. An optical system
ments (PEs) have a considerable amount of regularity, which can be made so that all interconnections have the same
can reduce the size of M. Examples include mesh-connected length to first order. (For example, this is the case in the
arrays, pyramids, &ad hypercubes. The interconnections optical logic system described in Sec. It.) Thus svnchroniza-
within each PE may be completely arbitrary. The fact that tion problems due to clock skew can be eliminated, making
many of the PEa would typically be identical provides a large synchronized systems more feasible. Being able to syn-
major reduction in M, since each interconnection pattern is chronize the circuits eliminates the need for handshaking or
stored only once. We also point out that whether the inter- other asynchronous techniques which introduce waiting time
connections are global or local has essentially no effect on M for individual circuit elements. The other design constraints
or N. associated with wire length, namely power consumption and

We have experimentally demonstrated the concept of device area utilization, can be avoided with optical systems,
this optical logic system. An array of NOR gates was used for example by using free space propagation in the third

with an interconnection system that uses a single hologram, dimension for the interconnections.
A test circuit consisting of 16 gates was implemented. It Pin-outs are not a constraint in optical systems. Opti-
comprises a synchronous master-slave flip-flop and a driving cal systems can accept a large number of parallel inputs and
clock consisting of an odd number of inverters in a feedback can generate a large number of parallel outputs. These are
loop. This experiment and its results are described in Ref. usually in the form of 2-D arrays of data or bits, e.g. bit
10.



planes of images. The careful partitioning of large systems Imoging
is then unnecessary, and limitations on concurrent and pipe-
lined processing due to large I/O requirements is relieved.

Of course, digital optical .3ystems will have constraints
of there own. It appears that these will be primarily con-
cerned with the gates. We have seen, for the interconnection
system described in Sec. It, that there is a preference for reg-
ular or repeated interconnections. The gates might also 4 A
present some design constraints; this may be in the total A

number used or in the average repetition rate at which they
are switched. In addition, other limitations may of course
surface as the technology progresses.

Because of these differences in the cost functions of
electronic and optical systems, certain application areas are
specifically well-suited to one or the other. VLSI systems
are being particularly considered for applications which Fig. 3. Optical interconnection system Ior cellular logic
involve very regular structures and simple data flow that - block mode. Imaging optics are omitted for clarity.
can be handled with only local communications. An exam- Gate outputs enter from the left, and the right plane is
pie is systolic array architectures [15,17], which are well- sent to the gate inputs. Image pixel inputs are shown,
suited to many vector-matrix and matrix-matrix operations. one to each block (PE). Gates numbered I are part of
On the other hand, algorithms which inherently require glo- PE 1, gates numbered 2 are part of PE 2, etc.
bal communications cannot be conveniently handled by in the number of gates per chip. If the PEs do not all fit on
VLSI, but could, in principle, be implemented with an opti- one chip, they may be divided so that k x k PEs are put on
cal logic system. Examples of such communication-limited each chip; or, each PE may be distributed over more than
operations include some fast Fourier transform (FFT) algo- one chip so that each processor chip has a portion of every
rithms which required global communications due to their PE on it. This is possible because of the parallel I/O of each
butterfly structure [18], and some image processing opera- chip - conceivably each chip could have 10s I/O lines.
tions which will be discussed in Sec. IV. A variant of the hybrid interconnection system could

be used. In this case volume (thick) holograms are used,
which could be optical copies of computer-generated holo-

A cellular logic processor uses a PE, or cell, for each grams. This provides an increase in optical power efficiency
pixel or set of pixels of an image. A full array processor has as well as in the achievable hologram complexity. It also
in principle a separate PE for each pixel of an image, so that provides the possibility of copying multiple computer-
the number of PEs is equal to or larger than the size of the generated holograms onto one volume hologram, which
largest image it will process. The number of PEs in a might be used to interconnect a mosaic of 2-D gate arrays.
subarray processor is generally smaller than the image size. Again there are two possible ways of organizing the loca-
The discussion here applies primarily to full array proces- tions of the PEs.
sors, but the possibility of processing images larger than the In one case each PE is physically localized. Topologi-
number of PEs will also he considered. cally neighboring PEs are placed in physical proximity. The

Possible Optical Implementations hologram or gate array(s) are conceptually divided into
blocks, one for each PE (Fig. 3). All gates numbered I are

Again we use the optical logic system of Fig. 1. We part of PE 1, gates numbered 2 are part of PE 2, etc. We
assume that one gate array can provide t to 0io gates refer to this as block mode. Communication within a PE is
We refer to one gate array plus one interconnection unit as done by interconnections within each block,' and between
a chip, and note that multiple chips can be connected. We PEs is done by the same type of interconnections, only they
should point out that the number of chips that can actually pass into neighboring PEs. In this case, communication
be used in an overall system will depend on improvements in within each PE can be arbitrary, between neighboring PEs
switching power of the gates and advancements in other
areas. Also, while in priciple the system of Fig. 1 can be is easy, but between distant PEs may be more difficult (i.e.,
made small (-I cm on a side), we will not consider the it may increase the hologram complexity). The requirementson the hologram complexity in order to implement a cellular
effects of physical size in this paper. Now, an interconnec-
tion unit or units may be used to connect between a small logic processor are approximately the same in this case as
number of chips. Another method of interconnecting, when with the hybrid interconnection system, but since a more

the number of chips is moderate, may be to mosaic multiple complex hologram can be made, more gates can effectively
gate arrays into a larger 2-D array, and to use larger holo- be interconnected.
grams to interconnect both within each gate array and The other extreme distributes each PE over the gate
between gate arrays. array(s). In this interleaved mode, corresponding gates, one

from each PE, are physically grouped together (Fig. 4). TheThe hybrid or basis-set interconnection system

described in the previous section could be used to implement image is input to one group of gates, which are the input
a cellular logic processor. Since all PEs are identical (except gates of each PE. Within-PE interconnections are then done
perhaps for a small number of additional PEs for other pur- by connecting an entire group of gates to another entire
poses), the number of interconnection patterns is relatively group of gates. Between-PE interconnections can be done
small. The gate array will most likely be the limiting factor similarly except with a slight misalignment from one group



nections between each bit :a memory and the PE(s) that

correspond to that bit. A gate array that could store on the
order of 512 x 512 bits could have 5122 or 262,144 lines

(each with a fanout of 5 for the case 3f a 4-conrected cellu-
lar array), each to the appropriate PEs. Usii.g multiple
chips may permit these numbers to be even larger.

In the case of electronic sub-array machines, similar
limitations exist. Processing speed is limited primarily by
the data rate of the bus between PEs and memory. In addi-
tion, if pixel operations are done by look-up table, this can

put an added load on the bus or on the required storage

within the PEs. These points are discussed in 1191. In the

optics case, data can again be transferred quickly and in

parallel between memory and PEs, so that the data rate of

the transfer is not a significant part of the processing time.

Fig. 4. Optical interconnection system for cellular logic Another possible advantage of optical CLPs is in the
- interleaved mode. Imaging optics are omitted for PE to PE interconnection network topology. Each PE can
clarity. Image inputs are shown, one to an input gate have a larger number of input and output lines (although

of each PE. Gates numbered I are part of PE 1, etc. additional gates are needed to in each PE to select among

of gates to the other. Again the hologram complexity dic- the lines). In addition, longer interconnections between PEa

tated by this system is approximately the same as in the are feasible. For example, the hybrid iL -rconnection system

hybrid system. of Sec. II cannot distinguish between global and local inter-
connections. In the other interconnection systems of this

Architectures and Characteristics section, global between-PE interconnections do increase the

One problem with full array cellular logic processors complexity of the hologram or optics somewhat, but may

(CLPs) is that there may always be some images to process, still be feasible. Such between-PE interconnections can sub-

say of size en x m, that are larger than the number of PEs, stantially reduce the communication time between PEs. For

say n 2 When such an image is processed, if it is processed example, in a simple nearest-neighbor mesh-connected array,

in blocks of n x n pixels, one to a PE, then the borders it takes 0(n) time for data to be traasfered between PEs on

between blocks can cause problems, especially in iterative opposite sides of the array. Going to a hypercube, which

calculations. Incorrect data propagates inward from the connecte each PE to PEa at distances of 1,2,4,...,21 in each

border by an amount proportional to the number of itera- dimension, lowers this communication time to O(Iog 2n ); the

tions J191. One way of avoiding this is by loading blocks of number of lines connected to each PE in this case is also

the image with overlapping boundaries into and out of the 0(log2n ) 1211.

array during every iteration. This significantly slows the Reference 22 classifies different types of communica-

process down in the cas of moet electronic CLPs; while the tions between PEs and gives the corresponding communica-

calculations for one iteration may be done in 0(1) steps, tion time on different network topologies. Some classes

loading data into the PEa takes O(n) steps if n PEa are depend on the diameter of the graph representation of the

loaded in parallel. Another way of avoiding this boundary network. Examples include broadcasting, where one PE
m
2

problem is to store -M- pixels in each PE. This adds to the sends a message to many PEs, and condensing, where many

storage requirements ad complexity of the PE; they must Pbs send messages to one PE, such that the messages can be
btorge apabl men and the largest image thwile pro- combined en route to the destination. In both cases a glo-
be capable of handling the largest image that will be pro- bally connected array such as a hypercube can perform the
ceased on the machine. communication in 0(logn) steps, whereas a conventional

Another problem with electronic full-array CLPs is mesh requires 0(n) steps. Another class of communication

caused by pin-out limitations of LSf and VLSf chips. If a operations is one-to-one tasks, or permutations. Here the

large array is partitioned into chips with k x k PEa on each topology, but not the diameter, determine the time, but

chip, then 0(k) pins are needed for interconnections between again the bypercube requires O(logn ) time, whereas a mesh

PEs, if the number of I/O lines to each PE is a constant may require 0(n2) time.

independent of n. If it instead grows with n, as in the case Such between-PE interconnections can substantially
of a hypercube, for example, the number of pins required uc t e co e o s alg substandipro-
grows faster than O(k). Finally, to avoid the bottleneck of reduce the computation time for some algorithms and pro-

transferring images into and out of the PEa, as described ceasing operations used on images in CLPs. Examples of

above, k2 pins would be needed. We should point out that operations that utilize some of the communication tasks
whil thse robemsappar o belarelyinhren inthe listed above are the calculation of transforms, moments.

while these problems appear to be largely inherent in the value counting or histograriming, and region property com-
technology, it does not necessarily prevent future clever putation. Full array CLPs can do pointwise and local opera-

solutions from reducing their severity. At times they can be tions in a small number of steps that is independent of
lived with or partially avoided to a substantial degree. A image size. Since the above operations require time 0(logn )
case in point is the MPP [201. or greater, and loading or unloading of image data into PEs

An optical CLP has the potential of bypassing most of typically requires time that grows with n in the electronics

these problems. They all amount to communications limita- case, technologies or architectures that reduce these times

tions, either between chips or between processors and could have a significant impact on processing times for many

memory. An optical full-array CLP could have direct con- image processing algorithms.
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2.3 Binary Image Algebra

Binary image algebra (BIA) forms the mathematical background for software and hardware

systems suitable for optical digital computing. Parallel algorithms for optical cellular logic and

symbolic substitution processors can be formalized as compact BIA expressions. BIA also leads

to the architectural design of digital optical cellular image processors (DOCIP) which are well-

suited to executing the parallel algorithms. The following three papers summarize our recent

work in these areas.

The DOCIP is a 2-D, page oriented array of individual processors located at every pixel of

a large image. The attached papers by K.S. ttuang, B.K. Jenkins and A.A. Sawchuk, "Binary

Image Algebra and Optical Cellular Logic Processor Design", from Computer Vision, Graphics,

and Image Processing, Vol. 45, pp. 295-345, 1989; "Image Algebra Representation of Parallel

Optical Binary Arithmetic", from Applied Optics, Vol. 28, No. 6, pp. 1263-1278, March 15,

1989; "A Cellular Hypercube Architecture for Image Processing", from Applications of Digital

Image Processing X, Proc. of SPIE-The International Society for Optical Engineering, Vol. 829,

San Diego, California, August, 1987, summarizes these concepts and their algebraic background.
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Techniques for digital optical cellular image processing are presented. A binary image
algebra (BIA), built from five elementary images and three fundamental operations, serves as
its software and leads to a formal parallel language approach to the design of parallel binary
image processing algorithms. Its applications and relationships with other computing theories
demonstrate that BIA is a powerful systematic tool for formalizing and analyzing parallel
algorithms. Digital optical cellular image processors (DOCIPs), based on cellular automata
and cellular logic architectures, serve as its hardware and implement parallel binary image
processing tasks efficiently. An algebraic structure provides a link between the algorithms of
BIA and architectures of DOCIP. Optical computing suggests an efficient and high-speed
implementation of the DOCIP architectures because of its inherent parallelism and 3D global
free interconnection capabilities. Finally, the instruction set and the programming of the
DOCPs are illustrated. C 195 Academic Press, Inc

1. INTRODUCTION

In this paper we combine studies of architectures, algorithms, mathematical
structures, and optics to show that: (1) an image algebra extending from mathemati-
cal morphology [2]-[5] can lead to a formal parallel language approach to the design
of image processing algorithms; (2) cellular automata are appropriate models for
parallel image processing machines [6, 7]; (3) an algebraic structure serves as a
framework for both algorithms and architectures of parallel image processing; and
(4) the parallel processing and global interconnection advantages of optical comput-
ing may be useful in efficiently implementing image algebra with cellular logic
architectures.

The purpose of the image algebra approach in this paper is for the development
of a programlning language for a specific parallel architecture, namely a digital
optical cellular image processor (DOCIP). The binary image algebra (BIA) de-
scribed here is based on a set of three specific fundamental operations. These
fundamental operations are the key operations in the instruction set of the DOCIP
machine. The BIA provides a decomposition of general operations, including
low-level image processing operations, into the three fundamental operations of the
instruction set. This decomposition is inherently parallel and provides a direct
mapping to the machine architecture.

'Supported by the Air Force Office of Scientific Research under Grant AFOSR-84-01lI and by an
IBM graduate fellowship. Portions of this paper presented at the 1987 IEEE Computer Society Workshop
on tComputer Architecture for Pattern Analysis and Machine Intelligence I].

Current Address: Computer Science Department IBM. T.J. Watson Research Center, Yorktown
IHeights. New York 10598.
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In this section, we first review previous work on image algebra, cellular automata,
and cellular logic architectures, then we define the algebraic structure and outline
the detailed discussion that follows.

Previous Work on Image Algebra

During the past few years, numerous papers have used an algebraic approach to
aid in image processing [2-5, 8-10). Among them, morphological image algebra has
the closest relation to binary image algebra (BIA). Many papers describe either
specific theoretical aspects of mathematical morphology or application-specific
morphological algorithms [11-18]. The applications of mathematical morphology
have been fruitful. In this paper we adapt it to provide the following features:

1. A simplified mathematical structure. Mathematical morphology comprises
two branches, integral geometry and geometrical probability, plus a few collateral
ancestors (harmonic analysis, stochastic processes, algebraic topology) [2]. The
mathematical details and formal proofs in morphology are often intricate and
involve advanced set theoretic and topological concepts which are not always
necessary for engineering applications.

2. A complete algebraic theory. Mathematical morphology defines some alge-
braic operators and utilizes some algebra. With our adaptation, we would like to
answer the following questions:

" What is the algebraic definition of this mathematical morphology?
* How powerful is this mathematical morphology?

" What is the definition of a transformation? Morphological transformations
are constrained by four principles [2]; here we introduce a complete definition of
image transformations.

3. Clarification of its relationship to other areas. We define its relationship to
linear system theory, image processing, and common computing techniques includ-
ing boolean logic, cellular logic, and algebraic structures.

Here we develop a simple unified complete parallel binary image processing
theory based on an algebraic structure- binary image algebra (BIA). In BIA,
parallel binary image processing algorithms (including parallel numerical computa-
tions) can be written as compact algebraic expressions where an algebraic symbol
represents an image (not a pixel) or an image operation (not a pixel-wise operation).
A complete algebraic system comprises three fundamental operations and five
elementary images which can be combined to generate any image in the three
fundamental operations for forming any image transformation. (In fact, one can
define four elementary images and two fundamental operations that are sufficient:
however, in this paper we will not consider them since they are more difficult to
use.)

There are other image algebras, each with its own characteristics [8. 91. Because of
our intended application to a highly parallel computing machine with simple
processing elements and a reduced instruction set, we utilize a BIA with only three
fundamental operations that can implement any binary image transformation. For
example, the counting function, which gives the number of pixels having a certain
level, is considered a mapping from a picture type of operand to a number type of
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Instructions

CIO I

Neighborhood
Confh uration

Image Array of Cells or Image
Processing Elements (PEs)

FIG. I. A sequential process of cellular logic operations (CLO). The value X'(. ;) is determined by
the corresponding X(t, j) in the original image along with the values of its neighbors

operand in references [8] and [91; in BIA numbers are also represented as images
[191. BIA suggests several simple but fast parallel image algorithms and a parallel
image processing architecture with a very low cell complexity.

Previous Work on Cellular Logic Architectures

To match BIA parallel algorithms by cellular logic architectures in a transparent
way, we characterize a cellular automaton by algebraic structure as BIA does. The
cellular logic computer was first inspired by the writings of von Neumann [20, 21]
on cellular automata. A sequential process of cellular logic operations is described
in Fig. 1. Some review of cellular image processors can be found in Refs. [21-251.
Many cellular computers have been constructed previously for implementing cellu-
lar logic operations, and some ideas for extending the nearest-neighbor connected
cellular logic computers for improving speed and flexibility have been proposed [24].
These architectures include: (1) the cellular string (Fig. 2(a)); (2) the cellular array
(Fig. 2(b)); and (3) the cellular hypercube (Fig. 2(c)); and the cellular pyramid (Fig.
2(d)). These three architectures share a common feature in the simplicity and
regularity of interconnecting simple processing elements and represent an intercon-
nection topology in ID, 2D, and 3D, respectively. The 3D case is difficult to
implement on a planar VLSI chip [24, 26, 27], but may be realizable by a digital
optical system [28, 29]. Two promising architectures based on digital optical cellular
image processors (DOCIPs), DOCIP-array and DOCIP-hypercube, are presented
helow as a means of implementing BIA effectively.

Definition of Algebraic Structure

An algebraic structure (or algebra) [30-32] is a pair (or system) A = (S, F),
where

* S is a set, and
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F is a family of operations which are functions,

f: S, - S.

and k is a finite nonnegative integer.

Remark. For any finite nonnegative integer k, we define a k-ary operation on S
as an operation which is a function f: Sk -S. Thus, a unary (or 1-ary) operation
on S is simply a function on S to S. A binary (or 2-ary) operation on S is a
function on S2 to S. For completeness, we define a nullary (or 0-ary) operation on
S to be a particular element of S.

a- connectiows in the 4-oottded cellular Wray

~)Connectlons in the 8-conneced cellular array

b

d

Fio. 2. (a) A cellular string. It requires only a 1D interconnection geometry. Each cell only connects
with its two nearest cells. (b) A cellular array. It requires a 2D interconnection geometry Each cell
connects with its 4- or 8-nearest cells. (c) A l-djinensionall cellular hyTpercuhe [241. Each cell connects
with cells at distances 1,.2A4,8.-24 from it. Here, only the connections with distances 1, 2, and 4 are
shown. (d) A 2-dimensional cellular pyramid. It consists of stages of arrays with connections between two
adjacent stages and is most efficiently implemented with a 3D interconnection geomettx
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Therefore, the problem to be solved is essentially to find an "appropriate"
algebraic structure (S, F) for parallel binary image processing, i.e., to search for S
and F, and its "efficient" hardware implementation.

Outline

Section 2 contains the framework of BIA: Subsection 2.1 gives the basic defini-
tions; Subsection 2.2 presents two fundamental principles which prove the com-
pleteness of BIA.

Section 3 describes some applications of BIA: Subsection 3.1 reviews basic
properties of images and image transformations and derives from them some
standard image operations; Subsection 3.2 gives some examples of special cases;
Subsection 3.3 gives some useful theorems and examples for low level vision
operations, including morphological filtering, shape recognition, "salt" and "pepper"
noise removal, size, and location verification.

Section 4 discusses the relationship of BIA and other computing theories:
Subsection 4.1 describes the relationship with boolean logic; Subsection 4.2 de-
scribes the relationship with symbolic substitution and cellular logic; Subsection 4.3
describes the'relationship with linear shift invariant system theory, convolution, and
correlation; subsection 4.4 describes some standard algebraic structures supported
by BIA.

Section 5 presents the implementation of BIA on digital optical cellular image
processors (DOCIPs): Subsection 5.1 gives the algebraic description of the DOCIPs
which have the same algebraic structure as BIA; Subsection 5.2 gives the general
description of the DOCIPs.

Finally, the programming of the DOCIPs is illustrated in Section 6.

2. BINARY IMAGE ALGEBRA (BIA) FUNDAMENTALS

The overall philosophy of BIA is:

* An image, but not a pixel, is an object. For parallel languages and machines
for image processing, images can be considered as primitive variables for simplifying
the design.

* Complex image processing operations can be reduced to simple instructions.
Although image processing operations appear complex, the fundamental interac-
tions and the elementary components in a system are very simple.

Thus, BIA begins by:

1. Defining the universal image as the working space for images and their
image transformations.

2. Defining elementary images which can be combined to generate any image.

3. Defining fundamental operations which can be cascaded to form complex
operations.

4. Defining an image processing/analysis algorithm design as the choice of
"good" (or "appropriate") reference images and transformations.

II

A reference image can be any image and is a generalization of structuring elements
in mathematical morphology [2]. Reference images contain some predefined image
property (or information); image transformations (or operations) are used for



IIUANG, JENKINS. AND SAWCIIUK

measuring the image property from an input image. Image description, image
information extraction, or image property measurement is done by using reference
images to model or transform the original image to a final state which reveals the
desired information or is used to detect the desired properties easily.

Here we give the algebraic structure of BIA first, and then we provide definitions
and present two fundamental principles which allow us to generate any reference
image and to implement any image transformation. Ideally, BIA may be further
generalized to GIA (general image algebra) which deals with grey-level and com-
plex-valued images.

2.1. Definitions

DEFINITION OF BINARY IMAGE ALGEBRA (BIA). Binary image algebra is
an algebra with an image space S, which is the power set of a predefined uni-
versal image P(W), and a family F of operations including three fundamental
operations (6), U, -), which are non 0-ary operations, and five elementary images
(1. A. A ' B, B-), which are 0-ary operations. Symbolically,

BIA =(P(W); a, U, -, 1, A, A '.B,B ')I

i.e.. S = P(W) and F = (E, U, -, 1,A, A -', B, B'). The image space S and the
family F of operations will be derived in the following.

Basic Definitions

In general, a binary digital image is defined as a function f that maps each
spatially sampled grid point (x, y) of the picture on an orthogonal coordinate
system onto the set composed of two elements: I (i.e., white, foreground point or
image point) and 0 (i.e., black or background point). However, it will be more
convenient for our algebra, if we use a set of the coordinates of image points (l's) to
specify an image. In this paper, an image is treated as the set of coordinates of
image points (i.e., foreground points or pixels that have value 1). We begin the
description of BIA by defining our artificial universe:

DEFINITION 2.1 (universal image). The universal image is the set W = ((x. v)I
x C Z,, ye Z,, where Z. = {0, ±1, ±2... ±n} and n is a positive integer
(Fig. 3).

Remark. " " means "belongs to." Notice that given n, the universal image
defines the domain of our images. In fact, for an image with size larger than
(2n + 1) X (2n + 1) (the size of the universal image), we need. to increase the size of
the universal image or decompose the tested image into subimages whose sizes are
smaller than the size of the universal image. For the reason of simple practice. we
only consider the square tessellation of images. To deal with nonsquare (e.g.
hexagonal) tessellations, we can simply replace the universal image to be the set of
grid points corresponding to the new tessellation pattern.

DEFINITION 2.2 (image space). The image space is the power set (the set of all
subsets) of the universal image, i.e., S = P(!V).

DEFINITION 2.3 (image). A set X is an image if and only if X is an element of
the image space S, i.e.. X is a subimage (subset) of the universal image W.
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111 I- I I .- I 11

Symbo I 1 ally

111 . Ill1 ... 11

111 .. 111 .. 111

111 .. 111 .. 111

1 11 .- 111 -- 111

Fic. 3. Thc universal image W. It has (2n + I) × (2n + 1) image points and n is a positive integer

Sy mbolically,

X is an image *- X 4- S - X c W.

Remark. - C - means "is included in." There exist 22' '  2'' 1I different
images, Three terms related to images are defined:

1. Size (or area) of an image X, denoted as #(X), is the cardinalitv (i.e., the
number of elements) of the image X.

2. Foreground of an image X, simply denoted as X, is referred to those pixels
with value 1.

3. Background of an image X, denoted as the complement X (Definition 2.6),
is referred to those pixels with value 0.

Once we know the foreground of an image, the background of this image is well
defined (since the universal image is given first). Thus, the foreground is sutticient to
specify an image.

DEFINITION 2.4 (image point (foreground point)). A point (x. j) is an image
point of an image X if and only if (x, y) is an element of the set X.

Remark. The largest image is the universal image W and consists of (2n + 1) x
(2n + 1) image points. i.e., #(W) = (2n + 1) x (2n + 1); the smallest image is the
null image 0 (defined as the complement = W) and has no image points, i.e..
=(0)) - 0.

DEFINIrlON 2.5 (image transformation). A transformation T is an image trans-
formation if and only if 7 is a function mapping from the image space S to the
image space S.

Remark. There exist image transformations.
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0 000 0 00 00_0 000 00011 110 0000000
0001110 0011100
0000110 0011100
0000010 001 1 100
0000000 0000000
0000000 0000000

Itnput Reference R
Image Image

1111111 0000000 0111111
1100001 0011110 011..1111
1110001 0011110 0111111
1111001 0011110 0011111
111101 0011110 0001111
1 1 1 0000000 00001 1 1

1 101 1 000000 0000 00
Compoement 51 Union X u R 0418o1, XS R

FIG. 4. An example of fundamental operations: complement -, union u, and dilation (.

DEFINITION 2.6 (three fundamental operations). There are three fundamental
operations (Fig. 4):

1. Complement of an image X:

X = ((x, y)I(x, v) E W A (x, V) e X).

2. Union of two images X and R:

X U R = ((x, y)l(x, y) E X V (x, y) G R }.

3. Dilation of two images X and R:

{(XI + X 2 , Y1 + Y 2 ) E W(x 1 , Y) X, (x 2 , Y2 )E R}
xI9 R = (X. 0) ^(R. )

0, otherwise.

Remark. "A" means "and," and "v" means "or." Note that X usually
represents an input or data image and R is a reference image. The consideration of
null image in the dilation operation is missing in mathematical morphology (where
the dilation is defined as the union of all translations of X by all image points in
R); with this generalization we have a complete theory which is not found in other
image algebras because there is less demonstration of their capabilities for imple-
menting any image transformation. We can also define other image operations as
fundamental operations instead of these three operations. The reason for choosing
these three operations is because of their simplicity, and resulting simple software
design and hardware implementation. As shown later, these three operations may be
implemented by a 2D optical gate array with 3D interconnections.

DEI:INITION 2.7 (elementary images). These elementary images are constant
images, i.e., 0-ary operations. Each elementary image has only one image point.
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There are five elementary images:

1. / = ((0, 0)}-consisting of an image point at the origin

2. A = (1, 0)) -consisting of an image point right of the origin

3. A ' = ((- 1,0)) -consisting of an image point left of the origin

4. B ((0, ]))-consisting of an image point above the origin

5. B- 1 = {(0, -l))--consisting of an image point below the origin.

Remark. In fact, these five elementary images could be reduced to four elemen-
tary images, because I = A -

= A D A -' = B0 = B e B'.

DEFINITION 2.8 (reflected reference image). Given a reference image R which is
a predefined image for containing some desired image property or image informa-
tion, its reflected image is defined as

S= {(-x, -y)l(x, y) R}.

Remark. In many useful cases the reference image R is symmetric, then R = R.

2.2. Two Fundamental Principles

Two fundamental principles basically define the binary image algebra (BIA).
Before stating these two principles, we give some preliminary results.

LEMMA 2.1.

(X R)u(X R) ( 0 otherwise

V X, R E P(W), where I = ((0,0)) is an elementary image, A is the reflected
reference image of R. and "V" means "for all."

Proof. Appendix A.

Remark. This lemma says that if the image X matches the image R. then the
origin (central pixel) of the above output image has value "1." otherwise it is always
-0."1

THEOREM 2.1. Any image transformation T: P(W) - P( W) can be expressed as

T( X)=U{(X R) U(X0 ) U16)Q,}

where k _ tt( P(W)), R, and Q, are the reference images used to form any desired
image transformation, and

U
UR R tRU R 2 U ... uRA.
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Proof. Appendix B.

ThiEOREM 2.2. Any ima,;e can be represented as

X= U AB
('. ,)( X

where A'B J =- A' ) B',

A' -A (D A ED ... (DA = (i,o)} if i > 0,

A' A A-' ED) A-' ED.. OA-1 = {(i,0)} if i < O.

and A. B, A 1, B are the elementar , images defined in Definition 2.7.

Proof. Appendix C.

PRINCPI.E 1 (fundamental principle of image transformations). Ant image
transformation T can be implemented by using appropriate reference images R and the
three fundamental operations: (1) complement X of an image X, (2) union U of two
images, (3) dilation @ of two images.

Proof. It follows from Theorem 2.1.

In order to use Principle I efficiently in practice, we invoke Principle 2 for the
generation of reference images.

PRINCIPLE 2 (fundamental principle of reference images). Any reference image R

can be generated from elementary images (I, A, A , B, B 1) by ting the three
fundamental operations.

Proof. It follows from Theorem 2.2.

Therefore, by the above principles, we can represent BIA as:

BIA = (P(W); e, U,, ,A, A-', B, B-').

3. DEVELOPMENT OF BINARY IMAGE ALGEBRA (BIA)

BIA can have many applications in character recognition, industrial inspection.
medical image processing. and scientific computation. In this section we first review
the basic properties of images and image transformations, define 11 standard
operations, and give some special cases of dilation [2-5, 33-36]. Then we summarize
four theorems and some examples for binary image processing.

This section is primarily a survey of binary image processing algorithms with
implementation using BIA fundamental operations. These fundamental operations
are so chosen because they form an efficient basis for the instruction set of an
optically based cellular image processor. This survey serves as a description of a
parallel language for controlling the processor and how it is compiled into low level
instructions. The use of BIA for parallel numerical computation is described in 119].
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the nai. at cooidinale (x y) too pixet at Cootdonale (x.y)

(a) tho 4-noighborhood of (x.y) (b) the 8-neighborhood of (x.y)

FIG. 5~ The 4-neighborhood and 8-ncighborhoo-d of an iniage point (x, v),

3.1,. Basic Properties of Images and linage Transformations

DEFINITION 3.1 (connectivit '1 in images). 1. 4-neighbor and 8-neighbor: An
image point (x, I-) in an image X can have two types of neighbors:

(a) An image point (i, j) is a 4-neighbor of (x, y) 4- (I, j) + ( 1, V),
(. y ± 1)1.
Remnark. (-v y), (x ± 1, y), (x, ' t ± 1)) is called the 4-neighborhood
of (xY) and N 4 -=((0,0) (0, 1), (±1,0)1=i U A UA-'U BU B
(F-ig 5(a)).

(b) An image point (i, j) is a 8-neighbor of (x, Y) - (i. j) E Y( ±1. ,

( X, y' ± I1), (x ± 1, y ± I1)).
Remark. {(x, y), (x ± 1, 'Y), (x, y ± 1), (x ± 1.y 1)) is called the
8-neighborhood of (x, y) and N, ={ (0,0), (0, ±1). (1,0), (±V 1,+1))
(Fig. 5(b)).

2. 4-connected and 8-connected:
(a) Two image points (x, y) and (i,]j) of an image X are 4-connected

there exists a sequence of image points (x, y) = (x0 . y()), (x,, y,),..
(x, y_,) =(i. j), where (Xk. Yk) is a 4-neighbor of (xt -,, y,) and
(x,, y,) X, 1 <5k <!in.

(b) Two image points (x, y) and (i,]j) of an image X are 8-connected
there exists a sequence of image points (x, y) = (x0 . yo), (x, Y),.
(x, y,) = (i, j), where (x,, y,) is an 8-neighbor of (x, , Y, ~) and
(x,, y,) E X, I k mn.

Remark 1. "4-connected in X" and "8-connected in A" arc equivalence
relations (reflexive, symmetric, and transitive).

Remark 2. For any image point (x, y) in a nonnull image X, the set of (i, j)
such that (x, y) and (i, j) are 4-connected (or 8-connected) is called a 4-connected
(or 8-connected) component of X. A 4-connected (or 8-connected) component of X
is just an equivalence class in X under the equivalence relation -- 4-connected (or
8-connected) in X." Thus, a collection of 4-connected (or 8-connected) components
of X forms a partition of X, i.e., the set of all 4-connected (or 8-connected)
components ( X, ), ,, (where I is the index set of connected components) is a family
of nonnull subimages of X and has the following properties:

(a) X, vE 0 for all I e 1.

(b) X, n , 0 for all i :j, i,jec-I. (X, n X = X, U Xas deti ned in Deli-
nition 3.3.)
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Image X (a) A 4-connected component of X (b) An 8-connected component of X

Fir. 6. The 4-connected component and 8-connected comp,,ncnt (if an image.

Figure 6(a) shows a 4-connected component in an image X and Fig. 6(h) shows an
8-connected component in X.

Remark 3. If an image X has I 4-connected (or 8 connected) components. there
are I distinct equivalence classes in X. Each equivalence class X, can be represented
by an image point in X,. Thus, we may use I distinct image points which belong to /
different 4-connected (or 8-connected) components to represent the classes of the
image X,

Remark 4. In dealing with connectedness in both X and X, to avoid the
connectivity paradox" [331, it is preferable to use opposite types of connectedness

for X and X, i.e., if we use "4-connected" for X, then we use "8-connected" for ,K
and vice versa.

Remark 5. If any image X is surrounded by a border of O's, the component of
consisting of the points connected to (any one of) these 0's is called the outside of X
(Fig. 7(a)). If X has any other components, they are called holes in X (Fig. 7(b)).

For more detailed discussion of geometric properties of images, the reader is
referred to [33-351. For equivalence relations, equivalence classes, and partitions.
please refer to [30-321.

DFFINITION 3.2 (basic properties of image transformations). The key properties
of image transformations are the following ten basic properties:

I. Increasing. An image transformation T(X) is increasing

-((XC Y--T(X) cT(Y)) forallX, YeP(W).

2. Decreasing. An image transformation T( X) is decreasing

XcY- T(Y)cT(X)) forallX,Y

Image X (a) Tho otlsld. of X (b) The holes of X

Flo. 7 The outide and holes oif an image

i-
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3. Extensive. An image transformation T( X) is extensive

SX c T(X) for all X - P(W).

4. Antiextensive. An image transformation T(X) is antiextensive

T(X) c X for all X - P(W).

5. Idempotent. An image transformation T( X) is idempotent

T(T(X)) = T(X) for all XG P(W).

6. Shift invariant. An image transformation T( X) is shift invariant

T( X D P) = T( X) @ P for all X, P G P( W)

and P is a point image which consists of one and only one image point.
If an image transformation is not shift invariant, then it is shift variant:

T(X E P) : T(X) G P (in general).

7. ltomotopic. An image transformation T(X) is homotopic
there exists a one-to-one and onto correspondence between the connected

components of X and those of T(X), for all X e P(W). The same is then true for
the holes.

8. Commutative. A binary image operation • is commutative

- X. R = R • X for all X, R - P(W).

9. Associative. A binary image operation • is associative

,-(X.R).Q=X.(R.Q) forallX, R,QcP(W).

10. Distributive. A binary image operation - is distributive over a binary image
operation +

,-X.(R+Q)=(X.R)+(X.Q) forallX, R,QcP(4').

D)ii-INITION 3.3 (standard operations). Most standard operations can be derived
from the three fundamental operations; eleven common ones follow:

I. Difference of X by R (Fig. 8(a)):

'/R ((x,. v) E- XI(x, y) V R) = x R = A ,u R.

Remark. X = W/X. where W is the universal image. The difference is an
obvious approach to detect defects in the foreground of a tested image.
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0 - Intersection
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0 Erosion

Symmetric
FI Difference

d X ft AAR

(a Opening

00.
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FIG. 8. Eleven standard derived image operations: (a) difference; (b) intersection: (c) erosion:
(d) symmetric difference; (e) opening; (f) closing; (g) hit or miss transform (template matching);
(h) thinning; (i) thickening; (j) a sequential thinning (used for homotopic skeletonization) [36]; (k) a
conditional dilation.

2. Intersection of two images X and R (Fig. 8(b)):

X nR= ((x, y)l(xy j) C X A (x, y) c R} =X U R.

Remark. X u R = X n R. If X ) R * 0, then we say that an image x hits (or
is joint with) an image R. If X n R = 0, then we say that an Image X misses (or is
disjoint with) an image R.
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FIGuRE 8-Continued

3. Erosion of an image X by a reference image R or foreground template
matching of X by R (Fig. 8(c)):

Xe R = X A.

Remark. X D R = A A, and R = A? when R is symmetric. The erosion of an
image X by a reference image R can be thought of as the complement of the
dilation of the background by the reflection of the reference image R. In general, the
erosion of a nonnull image X by a nonnull reference image R can be used to
decrease the size of regions, increase the size of holes, eliminate regions, and break
bridges in X; on the contrary, the dilation of a nonnull image X by a nonnull
reference image R can increase the size of regions, decrease or fill in holes and
cavities, and bridge gaps in X. Furthermore, the erosion can be interpreted as a
foreground template matching where the foreground points of X E R indicates the
occurrences of the foreground template R in X (in this purpose, the size of R
usually is much smaller than the size of X).

4. Symmetric difference of two images (mod 2 image addition or subtraction)
(Fig. 8(d)):

X.R=(X/R)U(R/X)= XUR URUX.

Remark. The symmetric difference is a commutative operation, and its inverse
operation can be defined as itself. In Section 4 we show that this operation is the
parallel form of boolean EXCLUSIVE-OR. It is an obvious approach to detect
defects (including the foreground or background defects) of a tested image.

5. Opening of an image X by a reference image R (Fig. 8(e)):

XoR=(X eR)SR=Xe D eR.

Remark. The opening operation is an erosion followed by a dilaton with the
same reference image R. In general, the opening X o R with a nonnull reference
image R reduces the size of regions and eliminates some image points by removing
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all features in X which cannot contain the reference image R.

6. Closing of an image X by a reference image R (Fig. 8(f)):

X. R = (XD R) e R = (XE R)D k .

Remark. The closing operation is a dilation followed by an erosion with the
same reference image R. In general, the closing X- R with a nonnull reference
image R increases the size of regions and eliminates some background points by
filling in all background areas that cannot contain the reference image R, such as
holes and concavities in the image X.

7. Hit or miss transform ® of an image X by an image pair R = (R1 , R2 ) or

template matching of X by R (Fig. 8(g)):

X@R = (Xe R1) n (Xe R2 ) =( ') U (Xe 2).

Remark. The hit or miss transform of an image X by a reference image pair
R = (RI, R 2 ) is used to match the shape (or template) defined by the reference
image pair R, where R, defines the foreground of the shape and R 2 defines the
background of the shape. The key conditions are that the foreground X must match
R, (i.e., X e RI), while simultaneously the background X matches R 2 (i.e.,
X e R 2 ). In order to better define the hit or miss transform and its relationship with
conventional boolean logic operations, we start from a pixel-wise boolean compari-
son to derive the hit or miss transform in shape recognition (Theorem 3.2). Note the
similarity of the symmetric difference and the hit or miss transform.

8. Thinning ® an image X by an image pair R = (R1 , R 2 ) (Fig. 8(h)):

X®R = X/(X®R) U Gu (E At) u (Xe A2).

Remark. The thinning operation is antiextensive and decreases the size by
removing the central points of the regions which match the reference image pair
R = (RI, R 2 ).

9. Thickening 0 an image X by an image pair R = (RI, R 2 ) (Fig. 8(i)):

X O R = XU (X R) = X ( ED A) U (Xe a 2 ).

Remark. The thickening operation is extensive and increases the size by filling
the image points where the regions match the reference image pair R = (RI, R.).

10. Sequential operations (e.g., sequential dilation, sequential erosion, sequen-
nal thinning): If an image operation • is successively performed with each reference
image (or image pairs) in a sequence (Re) - (Ra, R h., R), then we define a
sequential image operation

X-(Re) = (...((X-R).Rt.)- .- R).
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Two examples are:

(a) Sequential thinning of an image X by a sequence of image pairs
(Re) = (R, R, ..., R,):

X®(R)=(...((X eRa)GRh)R... 8 ).

Remark. The sequential thinning is powerful in many applications, such as
constructing a digital homotopic skeleton of an image X. Skeletonization of an
image is an operation that transforms the image to a simplified image, called a
skeleton, which emphasizes its connectivity. However, a homotopic skeleton cannot
be obtained by digitizing an analog skeletonization algorithm; instead, a sequential
thinning with a sequence of reference image pairs should be used. Several different
algorithms employing different reference image pairs (called masks) have been
proposed by several authors 16, 361. Figure 8(j) shows an example of the skeletoniza-
tion by a sequential thinning with a sequence of eight reference image pairs
proposed by Levialdi et al. [361.

(b) Sequential dilation of an image X and a sequence of reference images
(Re) - (Re, R ..... R ):

Xe (Re) = ( .((X E R) e R) ... R:).

Remark. Since the dilation is commutative and associative, in practice the
dilation X E R with a large reference image R is usually implemented as a
sequential dilation with a sequence of small reference images. For example, if
R = ED E 2 a) ... @E, then

XER =(...((XeE,) eE 2 )E... aE),

and if E = El = E2  E, then

R = _ EE E...eE.
k

11. Conditional operations (e.g., conditional dilation, conditional erosion, con-
ditional thinning): An image operation • between an image X and a reference image
(or image pairs) R performed within a limiting set Y is called a conditional
operation and is denoted

X.R I ' (X. R) n Y= X-Ru .

Remark. Figure 8(k) gives an example of the conditional dilation.

3.2. Examples of Special Cases: Translation (Shifting), Expansion,

Shrinking, and Projection

Translation (shifting), expansion, shrinking, and projection in a direction can be
achieved by the dilation (or erosion) in a direct way.
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1. Shifting an image X from coordinate (x, y) to coordinate (x + i, v +j) is

done by

X {(i,j)) = Xe {(-i,-1)1.

Remark. A point image ((i, j)) corresponds to a discrete delta function at

S(x - i, v -j). Thus, an image function X(x, ) (which corresponds to the image

X) convolved with the delta function 8(x - i, y -j) or correlated with S(x + i,
v +j) is the same as X • ((i, j)) = X 0 (-i, -j)}.

2. Adding a new 8-connected or 4-connected boundary to an image X (i.e.,
expansion) is done by

X 4 N4  or X a N,

where N4 =- I U A U A 1 u B U B' and N,- Ul, = I A'B'.

3. Removing the 8-connected or 4-connected boundary of an image X (i.e.,

.hrinking) is done by

Xe N4 = Xe A4  or A'e N,, = X' N,,

where N4 =_ IUA UA 1 UBU B 1 and N-UI,'.- A'Bl.

4. Projecting an image X to distance k in a direction 0, i.e.. producing a

shadow of X, where the furthest image point in the shadow in the direction 0 is at

distance k from the furthest image point in X in the direction 0: this can be
achieved by

A' E 0',

where E can be any one of the following:

* East: E= IUA, E'U =A '

9 South: S- IU B 1. S' _ UA -, B '

* West: 14'= 1/u.4 1 W, =U,'-, A

0 North: N =I U B, N' = Uk_ B'

Southeast: S, I U AB '. S,' = U,A'B
0 Southwest: S, IU A 'B '.

* Northwest: N.= I U A 'B, N. = U,o A 'B'

* Northeast: N, I U AB, N, = U,-, A'B'

* Horizontal: I .  , A', I1 - U' , A'

* Vertical: '= U_ I B', VA U,'. A B'

* l.eft-diagonal: L =U. ,A 'B', L', U' AA 'B'

Right-diagonal: R1, U- I A'B'. R', = U A A'B'.

3.3. Theorems for Low Ieeel Vision

Here we summarize four theorems and some examples for binary image process-

ing applications. Theorem 3.1 gives basic properties of the BIA fundamental
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TABLE I(a)
Basic Properties of Three Fundamiental Operations and of Thirec Derived Operations

(Alternative Fundamental Operations)

Oiperaion! Complement Union Dilation Difference Intersecton Erosion

Properlies X U u x + It X/H X o H X. f,

increasing No Y'es Yes Yes Yes Yes

Decreasing Yes No No No IJo No

Ine~v o Yes YeNo E No No

Yes
Aotestefl5,v No No No Yes Yes (if H D 1)

Iderfpotent No Yes No Yes Yes No

Sh~sti nrant No No Yes No No Yes

fonol~opic No No No No No No

Comirritative No Yes Yes NoYe No

Assocratee No Yes Yes No Yes No

Distributive No Yes Yes No Yes No
wrth -rn. op. (.it h n) (nith U)(withlU, n,)

TABLE 1(b)
Basic Properties of Some Standard Derived Operations

Orationi Symnnelnce Opening closing Thinning Thidkening Hotpc
Difference sk!etonot or

Properies .1 L, R X oR X . R X@R XOR X @(Ro)

Increasing No Yes Yes Yes Yes No

flec'C3erng No No No No No No

I xtessive No No Yes No Yes No

Antextensive No Yes No Yes No Yes

Idempotent No Yes Yes No hlo Yes

Sift inariant No Yes Yes Yes Yes Yes

Homotoptc No No No No No Yes

Comraive~o Ye No No No No No

Asocatise Yes No No No No No

Distributive No No No No No No
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operations and standard operations. We then describe the implementation of
morphological filters, shape recognition algorithms, "salt" and "pepper" noise
removal, and size and location verifications. Those more obvious proofs are omitted
for brevity.

THEOREM 3.1 (properties of image operations). The BIA fundamental operations
and standard operations have the properties shown in Table (a) and Table l(b).

Proof. Appendix D gives some of their mathematical expressions which follow
from the definitions.

Examples of morphological filters. Many image transformations are interpreted
as morphological filtering [2] or cellular filtering [6]. Some major morphological
filters are listed in the following:

1. One kind of morphological low pass filter (Fig. 9(a)): to remove high

frequencies in the foreground of an image X can be achieved by opening, i.e.,

XoR=(Xe R) e R =X R A R.

A second kind of morphological low pass filter (Fig. 9(b)): to remove high
trcqucriciCs in the background of an image X can be achieved by closing, i.e.,

X .R= (X ER) e R (X aR) DR.

3 A morphological high pass filter (as shown in Fig. 9(c)) which removes low
lrcquencies in the foreground of an image X can be achieved by the difference of
XV and its opening, i.e.,

X/(Xo R) = X/((Xe R) E R) = X/( e R) = (u (D A 9 R).

4. A morphological band pass filter (as shown in Fig. 9(d)) which removes low
frequencies and high frequencies in the foreground of an image X can be achieved
1w the difference of its opening with a smaller reference image R and its opening
ith a larger reference image Q, where R C Q, i.e.,

(XoR)/(XoQ) ((Xe R) q R)/((Xe Q) Q)

E ( ) G e Q) 0 Q)

-! D R R) U ( e T Q).-

TIrOREM 3.2 (shape recognition (template matching)). I. The locations of a
shape, that is defined by a nonnull reference image R and a nonnull reference image
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11111 Ho
X,. .a *\ I/ XoR

11111 O gM

b A X.R

I,,,,,°° goo
XR tQ" -X o R)

d X oR/XQ

FIG. 9. (a) One kind of morphological low pass filter (opening): (b) a second kind of morphological
low pas filter (closing); (c) a morphological high pass filter; (d) a morphological band pass filter.

(called mask) M (Fig. 10(a)), with R C M c W (W is the universal image), can be
detected by

(X e R) n (.re (M/R)) =(XD A) u (Xe (A/A))

(X e A) u (X e At' UA).

Equivalently, setting R, = R, R 2 = M/R. and redefining a nonnull reference image
pair R = (RI, R 2) (Fig. 10(b)) ),ieldv the hit or miss transform of X by' R:

X®R = (Xe RI) n (X e R,) (,S A,) U (X( A 2 ).

2. The locations of a shape, that is defincd by a family of nonnull reference image
pairs { R(0)} with 0 E 0 (E) is the index set of the family of nonnull reference image
pairs and R(O) = (R,(6), R2(0)), can be detected by the union of the hit or miss
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OAA 
A

0A A

k R

FIG. 10. (a) One kind of shape recognition. R represents the shape to be identified and must lie
entirely and exclusively in the mask defined by M. (b) Hit or miss transform which recognizes locations
of foreground points given by R, in conjunction with background points given by R2.

transform of X bY R(0):

U X®@R(O)= U (X e R(O)) n(X eR,(O))

=U (e A, (0)) u( X (0)).

Proof. Appendix E.

THEOREM 3.3 ("salt" and "pepper" noise removal). 1. "Salt" noise removal
(solaied image point removal) (Fig. 11I(a)): to remove art image point if its 4-connected
or 8-connected neighbors are background points (0's) can he a

X 0 Q4 =X U A' (D AM4
W,

X 0 Q~, A' U A'D M,,

where Q4 = (M, I) Q, (M, I ), M 4 =A U A IU B U B I N 41I and M,5
NIl.
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Image X Reference Image M, Reference Image Me

X YD 4 X u X (D M

x U X f~ At4  T uq-1

C

(X U X (A 4 ) U(X U(X (D M 4 )) (x u )Mg) u (Yxu (x Em))

FIG. 11. (a) "Salt" noise removal. (h) "Pepper" noise removal. (c) "Salt" and "pepper" noise
removal

2. -Pepper " noise removal (interior fill ) ( Fig. I11(b)): to create an image point at
a coordinate if its 4-connected or 8-connected neighbors are image points (I's) can be
achieved hY

X® R4 =X U X ( Ml4
or

XO R, = XU uX ( MR,

where R. = (11 MO), R, (1, Mj)
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3. "Salt and pepper '" noise removal ( Fig. 1 (c)): to remove noise points, that art

completely surrounded with 4-connected neighbors or 8-connected neighbors of th,"

opposite value, can be achieved by

(X DQ4 )/(X@ R4 ) = (Xu Xe ) u U (XQ M))
or

(X O Q 8)/(X @ R 8) = (X U X EM) U U(X M,)).

Proof. Appendix F.

Remark. This theorem demonstrates the fact that many higher level operations
(e.g., involving thinning and thickening) can be efficiently implemented by the three
fundamental operations. Using the same design methodology as the "salt and
pepper" noise removal, we can design many similar algorithms, such as spur
removal, bridge break, and edge detection (perimeter). For example, the detection of
the 4-connected or 8-connected edge of an image X (Fig. 12) can be achieved by

X/( X e N,) X U (V N)
or

X/( X N N 4) = X U (X D N4 ).

THEOREM 3.4 (size and location verification). The locations in an image X of the
regions including the reference image R and included in the reference image Q, where
R c Q, can be detected by

S(( Xe R)/(( Xe Q)* @ )) = s((x. e ) U (X --(D @ )),

where S(-) means the homotopic skeletonization. (An example is given in Fig. 13.)

Proof. Appendix G.

The above theorems serve as the typical rules for morphological image processing.
In fact, there are many ways to analyze the shapes and sizes of an image by using
only the three fundamental operations. As another example: comparing an image X

with its convex hull C(X) [341 is a useful technique to analyze shape. If there is only
one object or objects separated by distances greater than their own diameters in the
image X. then its convex hull is the intersection of projections (Fig. 14(a)),

4

n (xe E,).

here (-,, i = 1. 2,3.4, are 11, V, R,, L,, (defined in Definition 3.4), and k should
hc greater than the longest radius of objects in X. Then the difference of the convex
hull and the image C(X)/X indicates how many concavities the image A' has and
what their individual shapes and sizes are. Figure 14(h) illustrates an example.
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Image X Reference Image N8  Reference Image N4

X/(X 0 N,)

FIG. 12. Edge detection.
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X X ip V,

X' , ( nx)

b

A 1

1:iG. 14. (a) An example of the con'vex hull of an image X (implemented by the intersection of
projections). (b) The difference of C( X) by X.

4. RELATIONSHIP TO OTHER COMPUTING THEORIES

4.1. Relationship to Boolean Logic

BIA can implement any boolean logic operation on binary images. It is also
obvious that BIA fundamental operations can be implemented by a boolean logic
gate array with interconnections. The following straightforward correspondence can
be drawn between the BIA operations and boolean logic operations:

BIA operations Boolean logic operations

1. Complement NOT
2. Union OR
3. Dilation Multiple-input OR
4. Intersection AND
5. Erosion Multiple-input AND
6. Symmetric difference EXCLUSIVE-OR

Note that the inputs of OR and AND (corresponding to union and intersection)
come from two different images. The multiple inputs of OR and AND (correspond-
ing to dilation and union) come from the same image while the other operand image
R only determines the number and location of input pixel values. A complete logical
set is able to implement any boolean logic function; it consists of at least one of the
following sets: NOT and OR; NOT and AND, NAND; NOR. In BIA, in order to
implement any image transformation, we need a complete system of pixelwise logic
operations and we also need a translational type of operation (such as, translation,
dilation, erosion, convolution, and correlation) to allow the global information
extraction in an image or the information exchange between pixels of the same
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images. In order to have a 2D compact parallel form of image processing algorithms
whose variables are whole images, we define the parallel form of those correspond-
ing boolean logic operations as BIA operations. In fact, there are two boolean
algebras (P(W); U, r), -, 0, W) and (P(W);,A, n, -, 0, W), supported by BIA
also (Subsection 4.4). We can define several possible sets of fundamental operations
for implementing any image transformation, such as a parallel form of NOR (or
NAND or (NOT and OR) or (NOT and AND)) and a translational-type operation
(e.g., translation, dilation, erosion, convolution, and correlation). The reasons that
we choose complement, union, and dilation as the three fundamental operations
are:

* Nice mathematical properties. The dilation is commutative, associative, and
distributive over the union; but the erosion has no such properties.

a Simple hardware implementation. These three operations are easily imple-
mented by the 2D gate array and 3D interconnection technique.

* Simple software design. These three operations are inherently parallel and
frequently used operations. Algorithms can be written as compact formulas which
easily become very efficient fast parallel algorithms by simply applying the funda-
mental operations and removing the data depende.,c1'

Comparing BIA with the conventional boolean expressions for logic functions.
the major advantages of BIA are summarized in the following:

* BIA operations are inherently parallel, but boolean logic operations are
serial.

e BIA operations include parallel information transferring capabilities which
are missing in boolean logic operations.

: Algorithms in BIA are written as compact algebraic formulas whose vari-
ables are whole images, while a typical image processing algorithm is very difficult
to write in a compact precise boolean logic expression.

* BIA has pictorial physical meaning, while boolean expressions provide little
physical feeling for parallel image processing algorithms.

4.2. Relationship to Symbolic Substitution and Cellular Logic

Symbolic substitution is a means of performing parallel digital computations and
can be used to implement boolean logic, binary arithmetic, cellular logic, and Turing
machines [37, 38]. It involves two steps: (1) recognizing all the locations of a certain
spatial pattern within the 2D input data and (2) substituting a new replacement
pattern wherever the search pattern was recognized. BIA 'can be used to realize a
symbolic substitution rule,

(X®R) Q = ( e Al) U (Xe A2 ) e o ,

where X is the 2D input data, R = (R1 , R 2) is the reference image pair correspond-
ing to the search pattern (R, and R, define the foreground and the background of
the search pattern, respectively), A defines a reflected reference image given bv
R = {(-x, -v)l(x, y) E R}, and Q is the reference image corresponding to the
replacement pattern. Thus, symbolic substitution rules are particular BIA image
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transformations having the above form; and BIA represents a general complete
systematic mathematical tool for formalizing the symbolic sulstitution algorithms.

Cellular logic architectures have been briefly reviewed in Section 1. A cellular

s logic operation transforms an array of data into a new array of data where each

r element in the new array has a value determined only by the corresponding element

n in the original array along with the values of its neighbors (Fig. 1). In BIA, an image

A transformation can be written as a polynomial of reference images (Theorem 2.1),
where the reference images can have arbitrary large size. In terms of cellular logic,
the reference image essentially defines the neighborhood of a cell where the
neighborhood can be very large and not just nearest 4- or 8-neighborhood as in

J conventional cellular logic. Thus, cellular logic operations are also particular cases
of image transformations with small local reference images, and BIA also serves as a
systematic mathematical tool for formalizing cellular logic.

Because of existing hardware interconnection limitations, it is difficult and costly
to implement an image transformation with a large reference image in one clock

h cycle. In addtion. the conventional nearest-neighbor connected cellular arrays have
poor communication capabilities. To improve.this, we develop the DOCIP-hypercube
architecture in Section 5, which combines features of conventional nearest-neighbor
connected cellular logic architectures and conventional hypercube architectures for
implementing BIA effectively.

In summary, BIA provides a systematic mathematical formalism for both sym-
bolic substitution and cellular logic. The applications of symbolic substitution and
cellular logic can be accomplished by BIA; on the other hand, generalized cellular
logic architectures are good candidates for implementing BIA.

h

4.3. Relationship to Linear Shift Invariant Systems,
Convolution, and Correlation

t It is well known that the theory of linear shift-invariant (LSI) systems plays a key

role in conventional signal (including image) and system analysis 139, 40]. It is very
e natural that we like to ask what the relation between BIA and LSI system theory is.

A system is defined as a transformation or mapping from a set of input functions
into a set of output functions, and a 2-dimensional discrete LSI system is defined as
a system which obeys two properties:

J
g Linearity. Tfax(i, j) + bz(i, j)] = aTlx(i, j)] + bT[z(i. j)] for arbitrary
n constants a and b;

t ,, Shift-invariance. Y(i, j) = Ttx(i, J)l - y(i - k, J - 1) = T[x(i - k,
a N.

A linear system can be completely characterized by its unit-impulse response
roj. /. k. 1) = T([(i - k, j - 1)1. In an LSI system the unit-impulse response is
,lflply r(i, j: k, 1) = r(i - k, j - 1), and the output of an LSI system with input

0. / and unit-impulse response r(i, j) is the convolution of x(i, i) and r(i, J),
f (icliotcd hb

Sx(i j)*r(i, j) = x(k, I)r(i - k, /1- 1).
e
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Now, let us consider only binary images. In terms of the set notation, an image
X = ((i, j)lx(i, j) = 1) corresponds to function x(i, j). If we assume r(i, j) = I
at and only at n points which correspond to an image R with n image points, then
the convolution of x(i, j) and r(i, j) with a threshold t = 0 is

X* RI,-o = ((i, ).x(k, I)r(i - k, j - I) > 0)

= {(i + k, j + I)jx(k, I)r(i, j) > 0}

{(i + k, j + 1)I(i, j) e X, (k, I) E R}

=X R,

where the output of the threshold is defined as 1 if x(i, j)* r(i, j) > 0, and is 0
otherwise; and the universal image, as before, contains all image points (i, j), (k, I)
and (i + k, j + 1). This means that the dilation X @ R is the same as adding a
threshold I = 0 to the convolution sum. The reference image plays a role similar to
that of the unit impulse response in the binary image system. Similarly the erosion
X E R is the same as the convolution x(i, j)* r(-i, -j) followed by the threshold
I =n - 1.

Correlators have been used in pattern recognition for a long time [41]. Correlatior
is strongly related to convolution: convolution involves folding, shifting, anc
summing; correlation involves shifting and summing without folding. Therefore.

X E R = X *Rl,_ o = X o Rl, o

where * means convolution, o means correlation, and B means the reflecte(
image of R.

Furthermore, although the three fundamental operations of BIA are nonlineai
with appropriate number representations they are able to implement parallel numet
ical and linear operations too. Also, BIA can implement both shift invariant an
shift variant image transformations.

4.4. Some Standard Algebraic Structures

Some algebraic structures supported by BIA are:

1. (P(W); E) is a semigroup.

2. (P(W); E, I) is a monoid.

3. (P( W); A, 0. A) is an abelian group.
4. (P(W); u, n, , 0, W) and (P(W), A. n , 0, W) are Boolean algebra

5. ( P(W ); C) is a poset (partially ordered set).

6. ( J(W): u. n, C ) is a complete lattice.

i-am lmm m lhm lia Im Il l II
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Proof. (1) A semigroup is a set with an associative binary operation [30- 32]. By
Theorem 3.1, the dilation D is associative for all images in P(W).

(2) A monoid is a semigroup with an identity [30-32]. By Appendix D, the
dilation has an identity I = ((0,0)). Note that (P(W); G) is neither a semigroup
nor a monoid.

(3) A group is a monoid in which every element has an inverse. An abelian
group is a group in which the operation is commutative [30-32). By the definition
of symmetric difference (mod 2 image addition), it can be easily verified that its
identity is 0 and its inverse operation (mod 2 image subtraction) is itself.

(4) A boolean algebra is a set with operations V, A, -, 0, and I satisfying:
1. a V b = b V a, a A b = b A a (commutativity); 2. a V (b A c) = (a V b) A
(a V c), a A (b V c) (a A b) V (a A c) (associativity), 3. a V 0 = a (universal
bound); 4. a A 1 = a (universal bound); 5. a V d = 1, a A i = 0 (complementar-
itv)[30-321. ByAppendix D,(P(W); u,n, ,0, W)and(P(W);A, n, -, 0, W)
are Boolean algebras.

0 (5) A poset is a set with a relation satisfying: 1. the reflexivity; 2. the
antisymmetry; and 3. the transitivity [30-32]. The relation c satisfies these three

j conditions: 1. X c X for all X G P(W); 2. if X c R and R c X. then X = R; and
3. if XC R and Rc Q, then XC Q.

o (6) A complete lattice is a poset (S; <) in which every subset of S has a sup
d (the least upper bound) and an inf (the greatest lower bound) [30-32]. In the algebra

(P(W); u, n, C), given any subset of P(W), say { X(O)IO e 0} (0 is the index
ii set of the elements in this subset of P(W)), we have
d

sup = U X(O)
0ee

inf= fl X(0).

Thus, several standard algebraic structures and their properties can be directly

d implemented and used in BIA.

5. IMPLEMENTATION ON OPTICAL CELLULAR LOGIC PROCESSORS
r,

To map algorithms into architectures, we first use an algebraic approach for

d describing a cellular image processor. Then we design the digital optical cellular
image processors (DOCIPs) and their optical implementation. Figures 15 and 16
show an optical concept for the DOCIP implementation. The optical system can
realize an array of cells by a spatially parallel 2D array of optical binary gates and
performs interconnections of these gates by an optical hologram. The DOCIPs are:

* The DOCIP-array (Fig. 15), a cellular array processor, which uses optical
parallelism to map an inherently 2D parallel data structure to a 2D nearest-neigh-
hor connected cellular computer in a simple and direct way; its performance is
primarily limited by its 0(1) interconnectivity, and

* The DOCIP-hypercube (Fig. 16), a 2-dimensional cellular hypercube, which
uses optical parallelism and 3D global interconnection capabilities to implement a
hypercube interconnection.
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- Connections in the DOCP-array4 Optical Feedback Path
7_) Connochons in the DOC]"-artayS

Interconnection Unit
4- imaging (implemented by

optical hologram)

N

N x N Output Side of Array of Cells N x N Input Side of Array of Cells
(implemented by optical gate array) (implemented by optical gate array)

FIG. 15. An optical 4-connected or 8-connected cellular array (DOCIP-arrav4 or DOCIP-array8).
Imaging optics are omitted for clarity. Each cell connects with its four nearest cells and itself by optical
3D tree interconnection. The optical hologram provides both intra-cell and inter-cell interconnections.
The input and output sides of the optical gate array are interconnected by an optical feedback path and
are shown separately for clarity.

Here, the 2-dimensional cellular hypercube is used to match the structure of a
2-dimensional image and further improve the communication ability of a cellular
array. Ideally, a conventional hypercube (Fig. 17) increases the interconnectivity to
O(log N) for N computation cells; however, when laid out in 2-dimensional space,
its interconnection patterns are not space invariant; such spatial invariance is
desirable for image processing and for simple implementation in optical hardware.
To include this, we increase the interconnections to make a 2-dimensional cellular
hypercube (Fig. 18). The cellular hypercube introduces a symmetrical positive and

- Connections in the DOCIP-hypercube4 Optical Feedback Path

Connections in the DOCIP-hypercube8

Interconnection Unit
4-imaging (implemented by

optical hologram)

N

N r N OitpuI Side of Array of Cells N x N Input Side of Array of Cells
,.plomontoid by optical gate array) (implemented by optical gate array)

FIG. 16, An optical 4-directed or 8-directed cellular lypercube (DOCIP-hypercube4 or I)OCIP-
hypercubek). Each cell connects with cells in the 4 directions or 8 directions at distances 1, 2.4,...2A

from it by optical 31) free interconnection
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FIG. 17. A conventional hypercuhe (4-cube) laid out in 2-dimensional space. Its interconnections
have no spatial invariance.

-Connections in the 4-directed cellular hypercube
-.)Connections in the 8-directed cellular hypercube

El EJLEDEE

FI.18.A -ien0oa cellular hpcu-DCPheRcu7e ac clistrconce with
other cell, Eain a rateonhtdieecencodntElb l otiEl eaie. n

direction to,0 achieve1 a paill mrcad narat intrconecio pate1 nly ect srn

thc ~ ~ ~ (0,0 central) cell00 a.re00 EhEn all cel...once dniclys h eutn ntro in r pc
InvarIan
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negative index so that each cell is connected with cells having a relatwie one bit
difference in coordinate label in positive or negative x and Y directions; the
numerical difference of addresses of connected cells is nonzero in at most one bit
1421.

5.1. Algebraic Description

Having defined cellular automata and the implementation requirements of BIA,
we describe the DOCIP in an algebraic way:

DEFINITION OF CELLULAR AUTOMATA. A cellular automaton is an algebra
A = (S; F, N,.), where S is the state space which is a set of states. F is a family of
transition functions, and N, is the neighborhood configuration.

CONSTRAINTS OF IMPLEMENTING BIA.

1. S D P(W)

2. f'D {EU,J}

3. N DIU, U -'UBUB (or N, -),4 UA I uBUB '). where
D " means "contains."
Thus, in terms of cellular automata, the DOCIPs have to satisfy the above

constraints for realizing BIA. For storing input images and temporary results in a
more flexible way, the DOCIPs utilize three memory modules and share the same
algebraic structure (except the neighborhood configuration):

DOCIP= (P(Wx Wx W): (DU, -,N),

where -x" denotes cross product and N, can be one of the following four types:

1. DOCIP-array4. Each cell connects with its four nearest neighbors and itself,
i.e.,

Narrav4 = I O A U A ' U B U B .

2. DOCIP-array8. Each cell connects with its eight nearest neighbors and itself,
i.e.,

Narravy= U A'B'.
,J - I

3. DOCIP-hypercube4. Each cell connects with itself and those cells in the four
directions at distances 1,2, 4, 8. 2' from itself, i.e.,

Nhypercu' ,i U ( A' U B').
-0. +1, + 2, .2

where k is sufficiently large for the connections to traverse the entire array of cells.

4. DOCIP-hypercubeg. Each cell connects with itself and those cells in the
eight directions at distances 12, 4. 8-. 2 from itself, i.e..

Nhvpcru,,. U (A' u B' u A41' U A ').
2-(, . 2 . ' 2
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"lIt 5.2. General Desc'ription

le From the above algebraic des:ription. the DOCIPs have the same algebraic

ntt structure and differ only in their neighborhood configurations N,.. Thus, they share

the same architecture as shown in Fig. 19, but have different configurations of the

reference images E,, depending on the optical interconnection network which

defines the neighborhood. In practical applications, a larger reference image R can

be generated from a set of smaller reference image(s) E, by a "sequential dilation."
If it is possible to decompose R into a sequence R E, E E, -... D E, then

rf X R=(..(X E )eE 2) - E,).of

This decomposition may not exist; in which case R can always be decomposed as

R = RI U R, U ... UR,, and then

X0 R = (XE R,) u (Xe R,) u -. u(Xe R,).

where each R, can be composed from the smaller reference images E,.
Lre Basically, the proposed DOCIP as shown in Fig. 19 is a cellular SIMD machine

and consists of an array of cells or processing elements (PEs) under the supervision
),e of a control unit. The control unit includes a clock, a program counter, a test and

, a branch module for feedback control, and an instruction decoder for storing instruc-

me tions and decoding them to supervise cells. The array of cells includes a 1 x 3 x N 2

bit destination selector, three N x N x I bit memories for storing images, a

memory selector, and a dilation unit.
The DOCIP shown in Fig. 19 operates as follows: (1) a binary image (N x N

matrix) is selected by the destination selector and then stored in any memory as the
)es: instruction specifies; (2) after storing the images (1 to 3 N x N matrices), these

,elf,

'= Image Data (NxN Matrix) Control Unit
Control Signal

-lComplement Clock Counter

-elf. U Union

(ti Dilation

Instruction Memory Test and

3 and Decoder Branch

our rence Image

Image tn ia~n= eo= ad Dlto

Image
or Data Out

ells.

the

lir, 19 A digital optical cellular image processor (DOCIP) architecture- one implementation of

Ili. hoia gc algebra iBIA). The K)OCIP-array requires 9 (or 5) control bits for reference image 1-'. The

I)(('l-hvpcrcuhc requires O(log N) control hits for reference image 1,
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images and their complemented versions are piped into the next stage, which forms
the union of any combination of images; (3) the result is sent to a dilation where the
reference image specified by the instruction is used to control the type of dilation:
(4) finally, the dilated image can be output, tested for program control, or fed back
to step (1) by the address field of the instruction.

The entire system can be realized by an optical gate array with optical 3D
interconnections [25-28]. It should be noted that current optical technology has
implemented only arrays of moderately large numbers of gates (500 x 500) at very
slow (- ms) switching speeds, and alternatively, arrays of small numbers of gates
(2 x 2 to 6 X 6) at fast switching speeds (0.1 lis-50 ps) [43, 44]. Current ongoing
research in a number of laboratories looks promising in eventually providing the
needed arrays of large numbers of gates with reasonably fast switching speeds.
Alternatively, control of the DOCIP can be easily realized by using an electronic
host instead of the optical control unit, since control of SIMD systems is primarily a
serial process. The trade-off is a possible inefficiency in the interfaces between
electronic and optical units. Because of this the all-optical approach may be
preferable in the long term. To efficiently utilize optical gates, they can be intercon-
nected with a 2D optical multiplexing technique in which a common controllable
mask is used for all cells. The optical multiplexing technique has the following
advantages: (1) the DOCIP will no longer require the broadcasting of instructions
from the control unit-instead all cells fan their outputs into a common controlling
mask pixel; (2) it will reduce the number of gates; and (3) each cell has a simple
structure-essentially containing only a 3-bit memory with inverting and noninvert-
ing outputs, and a multiple-input OR gate for dilation [451.

To avoid the well-known drawbacks of conventional computers based on
von Neumann principles [23, 38], the machine in Fig. 19 has one instruction which
implements the three fundamental operations of BIA along with fetch and store.
This design uses the parallelism of optics to simultaneously execute instructions
involving all N 2 picture elements.

This single instruction has the format

(c. d . d 2. d. sl, s ..... s6 , n1, n 2 . . .- n, , J2, al, a ..... a, , h ..... bl).

where k is determined by the chosen neighborhood configuration Ne.. The DOCIP-
array requires k = 5 or k = 9 bits for controlling reference image R at a clock cycle
and the DOCIP-hypercube requires k = O(log N) for N cells, and I defines the
maximum length of a program: 21. The functions of these 11 + k + 2/ instruction
codes are:

* c is used to select the image from the input or from the feedback;
Sdl, d,. and d3 are used to select the destination memory for storing the

image:
SsP s ...... s are used to select the output from the memory elements:

* n. n ..... n, are used to control the neighborhood mask, i.e.. to supply the
reference image;

" j, and j2 are used to flag an absolute jump or conditional jump:

" a,, a2 .... a, are the address for jump; and

* b. , . ,h, are the address of the instruction.
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TABLE 2
Cellular Image Processor Execution Times for N x N Image Data

Technology Conventional DOCIP- DOCIP-

array array hypercube
Operation (electronics) (optics) (optics)

Local
operations 0(i) 0(1) 0(i)

Global O(N) O(N) 0(log N)
operations or O(N

2
)

Communication O(N) 0(1) 0(1)
PE - Main Memory or O(N

2)
Input/Output O(N) 0(0) 0(1)

or O(N
2

)

Note. Table 2 roughly compares the execution time for the conventional electronic

array processor, the DOCIP-array, and the DOCIP-hypercube.

Order of magnitude execution times for image processing on the DOCIP ma-
chines and on the conventional-array processors are compared in Table 2, In
contrast with the DOCIP-array, the DOCIP-hypercube increases the interconnec-
tion complexity to O(log N), but is able to perform many global operations in
O(logN) time. Comparing with the conventional-array processors having serial or
N-parallel input/output, the DOCIP-array will have the same order of performance
in local and global operations but will be improved in input/output performance,
and in principle could be as low as 0(1) in I/O operations. The DOCIP-hypercube
will not only be improved in input/output performances but also in global opera-
tions. With external memory, it can also be demonstrated to be general purpose in
the sense of the ability of simulating any Turing machine. One important feature in
the design of the DOCIP-array and DOCIP-hypercube is that optical 3D free
interconnection capabilities can be used to reduce the cell hardware requirements as
well as solve the global connection and I/O problems which are difficult to solve by
planar VLSI technology.

6. A PROGRAMMING EXAMPLE-SIZE VERIFICATION

BIA and DOCIP architectures can have many applications in character recogni-
tion. industrial inspection, medical and scientific research. Since BIA is able to
implement morphological operations efficiently, the DOCIP machines can efficiently
analyze the shape and connectivity of regions as well as measure their size, they also
have the potential to accomplish any image transformation. Here we illustrate the
programming of the DOCIP machines by a simple size verification algorithm:

0 Problem. Given an input image X with 31 X 31 pixels (Fig. 20) which
contains some square objects X,. we want to preserve those square objects X, which
satisfy< the condition.

size of R _ size of X, < size of Q

where R and Q are reference images as shown in Fig. 21. Other objects will bc

eliminated in the outpul image Y. The expected output image Y is shown in Fig. 22.
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M;. 20, The input image X'.

Reference Image R Reference Image 0

FIG- 21. The reference images R and Q.

:1(;,22. Thie expxt-ed outptimiage 1
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0 Algebraic expression for the size verification using band pass morphological
filtering (Theorem 3.2).

(,VER R ) U(X @)Q (DQ),

where R =Rand Q = in this special example.

a Algorithm for the DOCIP-array8.

0E3 ED E 3) u (, EDE l.) )

where E (Fig. 23) is the allowed reference image with the maximum size at a clock
cycle in the DOCIP-array8, the reference images R = E 3 = E E andQ =

E4= E e E (D E @D E = R a) E.
The DOCIP-array8 requires 13 steps to complete this algorithm, its program

(instructions) is in the following:

Assumne start with X' MAl ( X' stored in Afemnr1

I XA 0 E- Air, (DOF

M.A, 4)E- M (D El)

4. M, e E- 3 A O!e 4

5. M, 4B E -M X eE'G

6. Af,(DE M, (D E' x (t E2)

TYA, E) F - Al1  (D F4 0 E)

4. M, GE- AM,.(.X (DF' 2)

10. M, G F- M k (D_ 4 ED E)

1t. M, E- Ml3  (D P~ FD )

13 End with A I'- (Do F3 G F U ( .'4 E4

Reference Imnagc E
DOGIP-array8 Instruction Code for E

11ii I 11 11[1 it1111!i

[300IP-hypercubeB Instruction Code for E

P 10 10 10 10 10101010 tOI 10O~ 101 I [it~I 11 11 i 111111111I
for cells for ce4'l""O to F cell trcells

at distance 8 at distance 4 at distance 2 at distance I i0

Fl(t, 23 An allowed reference i. age F at a clock cvclc in the 1)OCllP-arravX (ailso allowed in
f)O(IP-h)spercuhcgl and its corresponding) (olir 33) hits in instruction Itiyt. - n, ) for corntrolling the
neighhorhoix] mask fi e . the reference irn.,gc for the dilation).
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Reference Image p

DOCIP-hypercube8 Instruction Code for P
1010 e 1010 lo ioollotolllO I 0000 ]111 IL 111111i I1111 111 111111

for cells for cell for cels b cell s
at distance 8 at distance 4 at distance 2 at distance 1/0

FtC.. 24. An allowed reference image P at a clock cycle in the DOCIP-hypercube8 (not allowed in tile
DOCIP-arravX) and its corresponding 33 bits (assume 31 X 31 cells) in instruction (n~n2 ...".1) for
controlling the neighborhood mask (i.e.. the reference image for the dilation).

Algorithm for the DOCIP-hypercube8.

(Xe PG,', 0POE) U(XeOPOE 2 @P@E 2)

where P (Fig. 24) and E (Fig. 23) are allowed reference images at a clock cycle in
the DOCIP-hypercube8, the reference images R = E3- P G E and Q = E'
P G E = R 0 E.

The DOCIP-hypercube8 requires 10 steps to complete this algorithm, its program
(instructions) is shown in the following:

Assume start with X'- A11 ( X stored in Memorpl)

I. M, O eP - m (D P)
2. M, 0it A- M-, (D P (DE)

3. M,2 D E - Af, (D P EDoE2 )

4. Al. D P - Af(.TX P ( e P)

lFt(; 25 The locations of the desired objects in the output tmage Y.
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7. M, o E M,(= XD P I2 D P D E)

6. V, U u' M, P(=,PG 1)')

10. End withW,- Y X .(D P01 E B) u (10 PG0 E2C GP (BI-))

The above programs can be translated into the machine instruction codes directly.
If we want to detect the geometric centers (locations) of the desired objects, then we
can use a sequential thinning to achieve the homotopic skeleton (Theorem 3.4) (Fig.
25).

7. CONCLUSIONS

We have summarized digital optical cellular image processing, including binary
image algebra (BIA) and the DOCIP architectures. BIA suggests a unified theory of

parallel binary image processing for developing parallel algorithms/languages and
can be generalized to grey-level images. Applications of BIA in binary image
processing are illustrated. The DOCIP architectures, especially the DOCIP-hyper-
cube, utilize the parallel communication and global interconnection capabilities of
optics for avoiding communication bottlenecks and matching BIA parallel algo-
rithms efficiently. A size verification algorithm is used to demonstrate the program-
ming of these -instruction DOCIP machines. Overall, BIA is a simple, precise, and
complete algebraic theory of binary images; the DOCIP machines have simple
organization, low cell complexity, and potentially fast processing ability.

APPENDIX A

Proof of Lemma 2.1. We start with the case of X = R and then the case of
X * R.

Case 1. X Ri.e., R X. We want to prove

1B U , u( X X U I =I (eX U(X ED nI I.

1. Claim Ic X) U (X ) nlI

-(0.0) G (De X) u (x e)
- a.) a(x E)X) U(X 0X) -

-(0, 0) ( (X X)] A 1(0,0) E (Xe X)J:
(a) Claim (0,0) 6 (X (D ,). Assume (0,0) G (XE ,)

-. (0,0) C ((a + (-x), b + (-y)) E W(a, b) F A, (-E . -X,) x ,"
- (0.0) C: ((a - x, h - v) - WI(a, b) (4 X, (x, v) F X)

- 3 (a- x, h - y) = (0,0) where (a, b) X, (x, y) C A
3 (x, v) : (a, h) where (a, b) 4 X, (x, v) F X

which is impossible, since (x, v) = (a, b) 4 X contradicts with (A. %,
(a, h) C X. Therefore, the assumption is wrong, we have that (0.0) (-
(Xe N).
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(b) Claim (0,0) (4 (X E X). Assume (0,0) C- (X A )
-~(0 0) G ((x + (-a), y + (-b)) GC WI(x. Y) Cz X, (-a, -1?) c=

AU
- (0,0) e ((x - a, y - h) G WI(x, y) EC X, (-a, -b) e AX)

-(0, 0) e {(x - a, y - h) f- WI (x, y) E= X', (a, b,) 0- X)

-3 (x - a, y - b) = (0,0) where (a, b) V X, (x, y) e X'
-3 (x, y) = (a, b) where (a, b) a X', (x, y) c- X

which is impossible. since (x, -v) = (a, b) 44 X contradicts with (x, y
(a, b) C A. Therefore, the assumption is wrong, we have that (0, 0) 4

(X ).

By (a) and (b), we have [(0, 0) 4Z (DeX A [(0, 0) e (X ( A')], i.e.,

I C (ED k) u (x 6).
We also know I c I, then we have

Ic (e AUu (Xe (D-) n I.

2. Claim (Xe (D ) U (Xe (E, U C 1. Since! I1, it implies

eeV) U(x e ~ui (De flu (xekn ic i.

From (1) and (2), we have

I C (e A)U (x e n~ i

and

Thus, by the equivalence of sets, we have (Xe A) u (Xe DX') n i =1.

Case 2. X * .i.e., R * .We want to prove

(ER) U(X(D Ui 1 0 - (X DR) u(X eR) nl1 0.

1. Claim lI T(e R) U(X E) )

(0, 0) 44 ((K 9 R) U (X e
(0, 0) E= (De R) U (X I)

.(0, 0) e X R) V (0, 0) (= (Xe RD
Now we assume (0,0)0 () (X R) A (0.0) e (X I R):

(a) If (0,0) e(.XeDR)
-(0,0) (4 ((a + k, b + l)1(a, b) G ,(k,1) eCR)
-(a + k, h + 1) * (0,0), V (a. b) C A, V (k, 1) C= R

(a, b) * (-k, -1), V (a, b) e X, V (k, 1) C R
-. V (k, 1) C= R, 3 (a, b) C= X, (a, h) = (- k, -I1)

V (--k, -1)E R-, 3 (a. b) C X. (a, b) =(-k, -1)

-((i. j) ) (Gi, j) C X)
- - '
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(b) If (0,0) 0 (X G R), then X C A. Since the dilation operation is commu-
tative, by interchanging the variables X and R and applying the same
procedure as (a), we have X C .

2. By the above (a) and (b), we have X R which contradicts with X = A.
Thus. the assumption is wrong, and we get(0, 0) Ei (x ( R) V (0, 0) f= ( X EDR

I t (Xe R) u (X D)
,-(XeR)u(xe)ni= o
- (,Ve R) u (Xe ) u I-= 0.

Hence, by Cases I and 2, we have shown that

(XER)u(XeD )u =lI ifX=R

,0 otherwise.

APPENDIX B

Proof of Theorem 2.1. Consider any image transformation (general case),

X, At

T : , -. A ,.

where X, E P(W). A, e P(W), i= 1,2..., 1.
If we choose R, = X,, Q, = A,, i = 1,2 .I.., I and use Lemma 2.1 and some

properties of the dilation (i.e., I E X = X and 0 E X = 0), then we have

T( X)= U{(e@R)U( X Ek) Ui EDQ,}

Since some images X, may map into the null image 0 for a given image
transformation, by Lemma 2.1 we have that

T(X)= U{(e R,) U (Xe ) UiDQ,

where k < / = (P(W)) is the cardinality of P(W).

APPENDIX C

Proof of Theorem 2.2. This can be shown in a very straightforward way. Any
image is a set of image points and is the union of point images (consisting of one
and only one image point). A point image {(i, j)) can be written as

((i, j)) = A'.

Hence, the union of all point images which are contained in X is the image X. For
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example, an image X = ((2,0), (1, - 1), ( - 1,2)) is denoted by

X = A 2 U AB U A -B 2,

APPENDIX D

1. Properties of Complement and Difference

The complement -. a unary operation, is decreasing and shift variant (considering
the outside of an image). The difference X/R, a binary operation, is increasing (but
decreasing with respect to the reference image R), antiextensive with respect to X,
and shift variant (the reference image R is fixed once it is given). Note that the
difference operation is not commutative, not associative, and not distributive over
other operations. Furthermore, the difference operation is more complicated than
the complement. Hence, it is preferable to employ the complement as a fundamental
operation, but not the difference. The major properties of the complement and the
difference are listed in the following:

1. X= W/X
2. X/R=Xn-R

3. 0 =W

4. W =

5. X = X (idempotent for twice complements)

6. X/ 0 = X (idempotent for a given reference image R = 0)

7. X/X= 0

8. X c Y c Y c X (decreasing)

9. X c Y ,-- X/R C Y/R (increasing)

10. X/R c X (antiextensive)

11. XCR-X/R= 0

12. X-R=- U R

13. XUR=VnR

14. X = o

15. XuX=W

16. XE) R= Xe R. where ( ((-x., -y)(x. v) - B)

17. X9 R= Ve A, where A {(-x, -y)(x, y) c R).

2. Properties of Union and Intersection

The union U, a binary operation, is increa:;ing, extensive, shift variant. idempo-
tent, commutative, associative, and distributive over intersection. The intersection
n, a binary operation, is increasing, antiextensive, shift variant, idempotent, com-
mutative, associative, and distributive over union. The major properties of the union
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and the intersection are listed in the following:

1. X U 0 X
XA 0 o

2. XuX= X
XnX=X

3. X U R R U X (commutative)
X n R = R n X (commutative)

4. X U (R U Q) = (X U R) U Q (associative)
X n (R n Q) = (Xn R) n Q (associative)

5. Xu W= W
X n W = X (idempotent for a given reference image R = W)

6. X U (R n Q) (X U R) n (X u Q) (distributive)
X n (R U Q) = (X n R) u (X n Q) (distributive)

7. X c X U R (extensive)
X n R C X (antiextensive)

8. X C Y - X u R c Y U R (increasing)
X c Y - X A R C Y n R (increasing)

9. Xc R XU R =R
Xc R X A R =X

10. RcXAQcX-RuQcX
Xc R A Xc Q-- Xc RuQ

11. RCXAQC Y-RUQCXU Y
R C X A Q c Y - Rn Q cX Y.

3. Properties of Dilation and Erosion

The dilation E, a binary operation, is increasing, extensive for a given reference
image R which contains the elementary image I, shift invariant, commutative,
associative, distributive over union, and possesses an identity which is I. The
erosion e, a binary operation, is shift invariant, increasing (but decreasing with
respect to the reference image R), and antiextensive for a given reference image R
which contains the elementary image I. But, in general, the erosion is not commuta-
tive, not associative, not distributive over other operations, and does not possess a
left identity. The major properties of the union and the intersection are listed in the
following:

1. X E R = R e X (commutative)
X e R # R e X (in general)

2. (X E R) e Q = X (R E Q) (associative)
(Xe R) e Q Xe (R e Q) (in general)
(XE R) eQ =(Xe Q) e R

3. X eD (R u Q) = (X e R) U (X e Q) (distributive)
Xe (RU Q) =(Xe R) A (Xe Q)
Xe (RE Q) (Xe R) e Q

4. X (D= X =I X (identity)
Xe 1= X* Ie X (in general)
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5. Xe 0 - 0 = 0 e X
X e = W 0 X (in general)

6. X c X e R when I C R (extensive)
X e R C X when I C R (antiextensive)

7. Xc Y,- XD R c YG R (increasing)
X c Y X e R c Y e R (increasing)

8. Rc Q,-XDRc XeQ
RcQ-XeQcXeR

9. X E (R n Q) c (X E R) n (X ( Q) (distributive inequality)
X E (R n Q) : (X E R) U (X 0 Q)
(XU Y)eRD(XOR)n(YeR)
(Xe R) eQc (Xe R)eQ
Remark. :" - means "contains."

4. Properties of Some Standard Operations

I. The symmetric difference is shift variant (with a fixed reference image R),
commutative, and associative. Symbolically,

(a) XAR = RtX

(b) XA(RAQ) = (XR)xQ

(c) XAO = X

(d) XA X 0

(e) XA7X = W

(f) XAW =
(g) X n (RAQ) = (Xn R)zx(X n Q)

(h) X U (RAQ) # (X U R),,(X U Q)(in general)

(i) XAR = YAR - X = Y.

2. The opening o is shift invariant, increasing, antiextensive, and idempotent.
The closing • is shift invariant, extensive, and idempotent. Symbolically,

(a) XoR C XC X.R

(b) Xc Y- XoRc YoR

(c) Xc Y-X.Rc Y-R
(d) (XoR)oR = XoR

(e) (X. R). R = X- R.

3. The thinning is shift invariant and antiextensive. The thickening is shift
invariant and extensive. The major properties are in the following:

(a) X®RCXcXOR

(b) Xc Y-X®Rc Y®R

(c) Xc Y-XORc YOR.

(d) If R C Q (which means R, C Q, and R2 C Q2 )- then we have

Rc Q-- X®Rc X®Qc Xc XOQc XO R.

(C) XO R= X®R*, where R = (R1 , R2 ) and R* = {R 2. R,).
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APPFNDIX I

Proof of Theorem 3.2. We can easily see that (2) in Theorem 3.2 is a generaliza-
tion of (1) in Theorem 3.2. (1) is used for exactly matching shapes (or templates)
with shift invariance; (2) is generalized to more general cases. For example, to
consider noise and to have rotational invariance, we can choose the family ( R(O))
to incorporate all aspect reference image pairs. In the following, we prove (1) and
then (2) will follow from it directly. The proof will demonstrate the mathematical
correspondence between boolean logic and BIA. The notations x(i, j) and r(i, j)
will be used to represent the binary values (0 or 1) of pixels at coordinate (i, j) of
image functions which correspond to the images X and R in BIA notations.

First, let us use the boolean logic XOR (exclusive or) operation, i.e..

x(i, j)XOR r(i, j) = (i(i, j) A r(i, j)) V (x(i, j) A f(i, j)),

to achieve the pixelwise comparison, where the outpat value with "0' means that
".(i, j)" matches "r(i, j)" and the output value with "1" means that "x(i. j)"
does not match *r(i, j)."

Second, to check the occurrence of the shape (defined by R with M) in the tested
image X at coordinate (i. j). we have to shift the origin of the shape to the
coordinate (i. j) in X. Then the process of the comparison of the shape and the
subimage in X (limited in the mask M) and the indication of "match" (0) and "not
match" (1) will be performed by

V (i(t + k,j+1) Ar(k,1)) v V (x(i+k,j+1) A (kl)).
(A. 1) G (A. 1_ f- AV

If the above equation is considered as a binary operation operating on two images
x(i, j) and r(i. j), then this operation is not commutative; in order to achieve the
commutativity, we change (k, I) with (-k, -1) and denote ;(k, 1) = r(-k,, -1):

V (ji i-k. j-)A (k 1)) V V (x(i -k, j- ) A (k. 1)).
A. IbE-At ( A. bl)Ukt

If the output value of the above equation is "0," then it means that the location
(i. j) of the image X has the occurrence of the shape (defined by R and M); if "1,"
the shape does not occur at (i, j).

Third, let us run over all coordinates (i, j) (i.e., for all (i, j) C W the universal
image) and then the union of those coordinates with value "0" would be the answer.
The value "0" at a coordinate (i, j) corresponds to the nul image in set notation
and the value "1" at a coordinate (i, j) corresponds to the point image {(i, j)). For
convenience, in the following we mix the notations of boolean logic functions and
set notations; if the output of a boolean logic expression is "0," it represents the
null image 0; if "1," it represents the point image {(i, j)). Thus, we have

U V (.x(, - k., 1 ) A ,;(k, 1)) v

0. /)C-i4 A. I),, A

V (x(i- k,j- I) A r(k,1l))
A, i Al
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which is the same as

U ( V ((i-k j-1) A(kI))

U ( V (x(i- k, 1)A ) (k,1)))

Since x(i, j) 0 0 only when (i, j) e X and t(k, 1) : 0 only when (k,/) , we
have

U ( V (i(i -k, j-l) A ;(k,I1)))

(1, J) w C- AI, - 1) c- A

- ((i, j)I(i - k.j - i) e X,(k,I) }

S{(i + k.j + )1(i, j) e X(k,l) e )

Similarly, we have

0t. /)e (-k, /1C~

Hence, if we use "0" to indicate "match," we have

(e A) u (XE (Al/A));

if we use "I" to indicate "match," then we have

(5 e k) u (Xe (ID /)).

Thus, the locations of a shape, which is defined by a nonnull reference image R
with a nonnull reference image (called mask) M and R c M c W, are the image
points in the following

(E A) u (X E (Aflh)) (E A) U (x u A)

= (Xe R) n (ke (M/R)).

A more intuitive illustration is that the foreground X should match R by X E R
(using multiple-input AND gates to examine the locations where the l's should be),
while the background ,K should match M/R by ,X E (M/R). Combining both
results by the intersection (AND), we then implement the shape recognition by
(X E R) r ( X e (M/R)). Replacing R by R, and (M/R) by R2_ we obtain the hit
or miss transform (template matching) for shape recognition.
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APPENDIX F

Proof of Theorem 3.3. (1) The straightforward way for removing tile "pepper'
noise is the thinning operation X ® R4 (or X ® R,). Following this, we have

X R, X Xu (e I) u (X e M,,)

X XU (X e M,)

= u (x n Xe -m,)

=(T u x) n (ku Me-Al)

W n (uxe M-,)

=X U X CM 4.

(2) The straightforward way for removing the "pepper" noise is the thickening
operation X 0 Q4 (or X 0 Q,). Following this, we have

XC Q4 = xu (ED A4 ) U (XD I)

= x u (k e A) ux
X XU ED M,)A X

xU uX e ,, n c

=(X U i M4 ) n (X

(X (u E Ml)

(3) The straightforward way for removing the "salt and pepper" noise is to
take the difference of X8 Q, by X ® R, (or the difference of X® Q, by X ® R,).
By a similar procedure as above we can achieve the desired result.

APPENDIX G

Proof of Theorem 3.4. To extract the region whose sizes are between two
reference images R and Q, the straightforward way is to design a morphological
band pass filter:

( Xo R)/( XoQ) = ((eX R) D R)/((X e Q) 9 Q).

To obtain the locations of those desired regions, we then perform the skelotoniza-
tion:

S((( X E R) E R)/((X e Q) B Q)) = S((x e R)/((X e Q) e Q))
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Image algebra representation of parallel optical binary
arithmetic

Kung-Shiuh Huang, B. Keith Jenkins, and Alexander A. Sawchuk

A binary image algebra (BIA) that gives a mathematical description of parallel processing operations is

described. Rigorous and concise 13A representations of parallel arithmetic and symbolic substitution
operations are given. A sequence of programming steps for implementation of these operations on a parallel
architecture is specified by the BIA representation. Examples of arithmetic operations implemented on a
digital optical cellular image processor architecture are given.

I. Introduction unified systematic theory for binary pa-llel image
Digital optical systems hold the promise of provid- processing. Now, we show that BIA can also be con-

ing more accuracy, flexibility, and programmability sidered as a spatial logic which is a generalized parallel
than analog optical systems, at the cost of somewhat form of Boolean logic with an additional parallel infor-
lower throughput. t 2 To achieve digital optical com- mation transfer ability. BIA then becomes a formal-
puting, there are at least three possible logic systems: ism and a general technique for developing and com-
residue logic,t1-3 multilevel logic, 7-1° and binary log- paring parallel numerical computation algorithms for
ic.11 12 Because it is much easier to make reliable two digital optical computers. Previous discussions have
level devices for binary logic and only log2k of them are relied solely on pictorial descriptions of parallel arith-
needed to represent k levels, in this paper we consider metic operations. BIA provides a rigorous and concise
only binary parallel optical computing. A digital opti- mathematical description of parallel operations. In
cal cellular image processor (DOCIP) architecture this paper we give these rigorous BIA descriptions for
based on binary image algebra (BIA) has been demon- parallel addition, subtraction, and multiplication.
strated to be very powerful in parallel binary image Symbolic substitution has been considered as a
processing. t 3- 6  This paper demonstrates that the means for implementing parallel optical arithmetic
DOCIP with BIA algebraic techniques can efficiently operations. 17- 19 Symbolic substitution rules can be
perform parallel numerical computations also. described as particular BIA image transformations

Boolean logic equations for binary arithmetic are (Sec. 5). - Three different binary number representa-
not well suited to highly parallel operations on planes tions (row-coding, stack-coding, and symbol-coding as
of data; they do not reflect the location of data except originally described in Refs. 17-19) for binary arithme-
typically by a memory address. Here we first seek a tic in the DOCIP machine are developed. Parallel
software theory for parallel numerical computation operations of binary addition, subtraction, and multi-
algorithms that simultaneously have binary digital ef- plication are derived by BIA and illustrated as exam-
ficiency and the advantages of optical parallel process- pies. Parallelism is achieved by performing arithme-
ing. We have developed a binary image algebra tic operations on many pairs of operands
(BIA1,11; built from only three fundamental operations simultaneously. The carries for each pair of operands
and five elementary images, to serve as a complete are essentially propagated serially to keep hardware

complexity ow.2
1 Thus speed-ups close to linear, and

in some cases equal to linear can be obtained. In this
paper we consider only positive numbers. A suitable

When this work was dotn all authors werc with twi'trit" of digital number representation will easily provide for
,mthero (alifornia, )(epari net of Electrical Enginering. Signl negative nubers also. For example, two's comple-
& Image ~rocessing Institutl, l.os Angeles. ('alifornia 11t9. 1272; negat mers al forme, twons coK. . hian i no wthIIM I.I. at,, Rserch('utr.('rn mernt arithmetic can he perfo)rmed with only minoirK. S. tluang is now with IHM T1. .1. WVatson Research Ce(nte.r. (Com

iulr Science IDtepartmene IP.O. Boh x 71, Yorktown IH ights. Nf,%% modifications to the algorithms and programs given in
Y,,rk f():,)8. this paper, and with the addition of one more bit (the

(eceived I I Fe.rtarv 1!)88. sign bit ) to each o)eranid and resut.
(,):t :6.3t/tt5/lfx6 161$02.X)/0) Section 2 gives a brief review of BIA and the )O(I I)

S19!) Olti'al So-ijtv iif America, architect tire. Section 1 presents binary row-cdtded
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arithmetic: bi nary add ition and binary multiplicat ion 0 60 0 00 0 0 0 0 0 0 0 0 0
(including a matrix-constant multiplication and an 0 0 1 1 1 1 0 0 0 0 0 00 0

100 0 11 10 0O0 1l 0o
element-element multiplication). Section 4 presents 0 0 0 0 1 1 0 0 0 1 1 1 0 0
binary stack-coded arithmetic. Section 5 gives a BIA 0 0 0 0 0 1 0 0 0 1 1 1 0 0

00 00 o00 00 00 00 0
representation of symbolic substitution and discusses 0 0 0 0 00 0 0 0 0 0 0 0 0
binary symbol-coded arithmetic. Section 6 gives a ested Reference N

comparison for the above different number represen- Inrage

tations. Binary subtraction is presented in the Ap- larity.1 0000000 011 11 1
pendices for clarity. 1ooooi 0011110 011 ii11

1110001 00110 0111111

111101 0011110 0001111
2. Binary Image Algebra (BIA) and DOClP Architecture 1 1 0 0 0 0 0 1 0 11

11101 0000000 000000

2.1 Review of Binary Image Algebra Complement y Uren X R Dilation X E, R

Binary image algebra (BIA), extending from mathe- Fig. 1. Example of fundamental operations: complement -.
union u, and dilation e.

matical morphology,
22 is a synthesis of Boolean logic,

set theory, and image processing. We give here a very
brief summary of BIA. Details are contained in Ref. X ( W A (Xy) I X (2)
16.

A binary digital image is usually defined as a func- (b) Union of two images X and R:
tion f mapping a spatially sampled set of grid points x R = J(x,y)j(x,y) e X v (x,y) F RI. (0)
(x,y) of an orthogonal coordinate system onto the set
composed of two elements: 1 and 0. However, it will (c) Dilation of two images X and R:

Xea R = Of+ X"*Y1 +2 C (l~')C ,X2y)eR (X ; 0) A (R ie o), (4)

10xI + W](x1,v1) e X,(x 2,y2) e RI otherwise.

be more convenient for our image algebra to use only Remark: e denotes belongs to, A denotes and, v de-
the set of coordinates of pixels that have value 1 to notes or, and 0 is the null image having no image point.
specify an image. In BIA, an image is then treated as a Note that X usually represents an input image and R is
set of coordinates of pixels that have value 1. This a reference image containing predefined information.
paper deals with only binary arithmetic; hence, a pixel We can define other image operations as fundamental
represents a binary bit and an image is a finite 2-D bit operations instead of these three operations. The rea-
plane. We list here only those basic definitions and son for choosing these three operations is because of

____ operations which will be referred to later. their simplicity, simple software design and simple
Definition of Binary Image Algebra (BIA) hardware implementation. Dilation can be interpret-
Binary image algebra is an algebra with an image ed as a parallel mathematical formalism of the pattern

space S and a family F of five elementary images and substitution step in symbolic substitution (Sec. 5).
three fundamental operations. Symbolically, (7) Five Elementary Images: There are five ele-

BIA = [P(W);9,u,-,I,A,A-',B,B-'l, (1) mentary images:
(a) I = 1(0,0)1---consisting of an image point at the

where S = P(W) and F = ($,u,-,I,A,A-l,B,B-1). The origin,
image space S, the family F, and all other symbols are (b) A = 1(1,0)-consisting ofan image point right of
defined in the following, the origin,

(1) The Universal Image (the bit plane containing (c) A - = 1(-1,0)--consisting ofan image point left
all bits with value 1): The universal image is a set W = of the origin,
l(xy)lx E Z,,,ye Z,, where Z, = 10, 1,±2,. .. ±nl and (d) B = I(0,1-consisting of an image point above
n is a positive integer. the origin,

(2) Image Space (the set of all possible bit planes): (e) B-' = 1(0,-1)-consisting of an image point
The image space is the power set (the set of all subsets) below the origin.
of the universal image, i.e., S = P(W). In fact, these five elementary images could be reduced

(3) Image (bit plane): A set X is an image if and to four elementary images, because I = A e A-' = B
only if X is an element of the image space S, i.e., X is a B-1. Any (reference) image can be represented as
subimage of the universal image W.

(4) Image Point (a bit with value 1): A sampled x = u A'11,
point (bit) (x,y) is an image point of an image X if and ' .
only if (x,y) is an element of the set X. where A',B -= A, D BI,

(5) Image Transformation (a mapping between bit A' A 0 A . , A 1,O11 iii >0.

planes): An image transformation T is a function
mapping the image space S into the image space S.

(6) Three Fundamental Operations (Fig. 1): A' A 'a A .. A = (o)l ifi <U.
(a) Complement of an image X:
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A" .4 D.4- =1.

(8) Reflected Image: Given an image U?, its reflect-
ed image is defined as

/ ( c-x,-vlrlx ") 4 Rt. (6)

(9) Some Standard Derived Operations: X I kfR

(a) Difference of X by R [Fig. 2(a)l: (

X/R = j(x,y)I(x,y) c X A (x,y) a RI = X n R = N I. (7)

Remark: X = W/X where W is the universal image.

(b) Intersection of two images X and R [Fig. 2(b)]:

X 0 R 
= 

(x,y)I(x,y) C X A (x,y) E R1 = X u R. (8) B

Remark: Xu R = X ,) R.
(b)

(c) Erosion of an image X by a reference image R
[Fig. 2(c)]: 3 0

XeR= Xeil, ()

where I is defined above. Remark: X E R = X e R.
The erosion of an image X by a reference image R can
be thought as the complement of the dilation of the X R x R

background by the reflection of the reference image R. (C)
In general, the erosion of a non-null image X by a non-
null reference image R decreases the size of regions,
increases the size of boles, eliminates regions, and
breaks bridges in X.

(d) Symmetric difference of two images [Fig. 2(d)]:

XAR=(X/R) u(RIX)=X uR uRuX. (10) x N AR

Remark: The symmetric difference is a commutative
operation, and is its own inverse. f* 0o oints WUI ahs

(e) Hit or miss transform *® of an image X by an b: bacro.ud po.nt w..n vah o

image pair R = (RI,R 2) [Fig. 2(e)]: [ = .&Pi

X ® R = (X O R1 ) n (XeR = -(x , (XO-). (R2)

Remark: The hit or miss transform of an image X by a

reference image pair R = (R,,R2) formally describes the
pattern recognition step in symbolic substitution (Sec.
5); and it is used to match the shape (or template) [I.]
defined by -he reference image pair R where RI defines a.,.
the foreground of the shape and R2 defines the back-
ground of the shape. The conditions are that the I. X W) &R

foreground X must match R, (i.e., X e RI), while Fig. 2. Some standard derived image operations. The shaded
simultaneously the background X matches R., (i.e., regions in (l)-(d) correspond to pixels with value 1: (a) difference;
X G R2). Note the similarity of the symmetric differ- (h) intersection; (c) erosion; (d) symmetric difference (e) hit or miss

ence (parallel bitwise comparison) and the hit or miss transform (template matching).
transform (parallel shape or symbol recognition).

The important results of BIA are: (1) any image
transformation can be implemented by the three fun-
damental operations with appropriate reference im- 2.2. Review of DOCIP Architecture
ages; (2) any reference image can be generated from the We have designed a class of the digital optical cellu-
elementary images by using the three fundamental lar image processors (DOCIPs) for effectively imple-
operations; and (3) BIA provides an efficient represen- menting BIA.Y3I , Here we only summarize their mi-
tation for many parallel image processing algorithms jor characteristics. Details are given in Refs. 14 and
(e.g., shape and size verifications";). Here we demon- 15. To map BIA into the I)OCIP architecture in a
strate that BIA is also a fundamental tool for parallel transparent way, we first define the DOCIP algebra-
numerical computation. ically:
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ecfinition of Cellular Automata . .

A cellular automaton is an Algebra A (S;JN,) - ..

where S is the state space which ist ni ostates,F s
family of transition functions, and N, is the neighbor-
hood configuration.

Constraints on a cellular automaton for Implement-
ing BIA:

(1) S 1 '(V). V

(2) F ,

(31) N, I u) A u A 13 u B or N, A. A B B

where D means contains. Fig. 3. Digital optical cellular image processor (DOCII') architec-
Thus, in terms of cellular automata, the DOCIPs tore-one implementation of' binary image Algebra (MIA. The

have to satisfy the above constraints for realizing BIA. DOCIP-array requires 9 (or 5) control bits for reference image E,.

For storing input images and temporary results in a The DOCIP-hypercube requires O(logN) control bits for reference

more flexible way, the DOCIPs utilize three memory image E,

modules and all share the same algebraic structure
(except the neighborhood configuration):

)OCII' = I' W X W x W ;E,, .-,N,, (12) X =(X ( I) (X I ..... ( -( IRk), ( I,

where X denotes cross product and N. can be one of the where each Rj can be decomposed into smaller refer-
following four types: ence images E. 1

1
4

.
2

3

(1) DOCIP-array4: each cell connects with its four Basically, the proposed DOCIP shown in Fig. 3 is a
nearest neighbors and itself, i.e., cellular SIMD machine and consists of an array of cells

N....4= A ,A-' , I-. or processing elements (PEs) under the supervision of
a control unit. The control unit includes a clock, a

(2) DOCIP-array8: each cell connects with its eight program counter, a test and branch module for feed-
nearest neighbors and itself, i.e., back control, and an instruction decoder for storing

,_,,.= U AB. (14) instructions and decoding them to supervise cells.
,--l The array of cells includes a 1 X 3 line destination

(3) DOCIP-hypereube4: each cell connects with selector, where each line is N1 bits wide, three N X N X
(3)ose hprb cells inthe4directionsat nce ct w. 2 1 bit memories for storing images, a memory selector,

those cells in the 4 directions at distances 1,2,4,8........and a dilation unit. It operates as follows: (1) a
from itself, i.e., binary image (N X N matrix) is input into the destina-

= U (A' ., B'). (15) tion selector and then stored in any memory (or set of
memories) as the instruction specifies; (2) after one to

where k is sufficiently large for the connections to three images have been stored, these images and their
traverse the entire array of cells. complements are piped into the next stage, which

(4) DOCIP-hypercube8: each cell connects with forms the union of any combination of images (speci-
those cells in the 8 directions at distances 1,2,4,8 ... 2,' fied by the instruction); (3) the result is sent to a

from itself, i.e., dilation unit where the reference image specified by
the instruction is used to control the type of dilation;

I= IA',, B'., A'B' . A'B '). (16) (4) finally, the dilated image can be output, tested for
1.2. ,. ,t 2'program control, or fed back to step (1) as the instruc-

From the above algebraic description, the DOCIPs tion specifies.
have the same algebraic structure and differ only in The DOCIP machine (Fig. 3) has one instruction; it
their neighborhood configurations N,.. Thus, they implements the three fundamental operations of BIA
share the same architecture shown in Fig. 3, but have along with fetch and store.2-A This design uses the
different configurations of the reference images E, de- parallelism of optics to simultaneously execute in-
pending on the optical interconnection network which structions involving all jV- picture elements. Each
defines the neighborhood. In practical applications, a instruction takes one complete cycle to execute. Note
larger reference image R can be generated from a set of that the DOCIP machine can perform a dilation by any
smaller reference image(s) E, by a sequential dilation. reference image R that is a subset of the neighborhood
If it is possible to decompose R into a sequence R = E, configuration, N,, in a single clock cycle.

E., 9... 9 Et,, then The entire system can be realized by an optical gate

X SR =I ... I(N 4 E,) * E., ... D E,. (17) array with optical 3-1) interconnections.
1 1 12.-, Figure

4 describes an optical implementation concept for the
This decomposition may not exist, in which case R can l)OCll architecture. The l)OCIP has very low cell
always be decomposed as R = U I. , ... R.,,, and hardware cmnplexity to maximize parallelisn, yet
then enough cell sophisti('ation to permit the machine to
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opI~COl hologram IFig. 4. DOCIP physical concept. Each processing element (PE) or

cell connects with its cellular array or cellular hypercube neighbors 010111 001 10
and itself by optical 3-) interconnections. The optical hologram * • 00o
provides both intracell and intercell interconnections. Intracell [-!,
interconnections and imaging optics are omtted for clarity. The
input and output sides of the optical gate array are interconnected

by an optical feedback path and are shown separately for clarity.
.1 (b) (ciFig. 6. Parallel addition of binary row-coded numbers (): (a)

image X of operands; (b) image I? of other operands; (c) output

execute useful programs. The use of optical intercon- X + R?.
nections permits a cellular hypercube topology to be
implemented without paying a large penalty in chip
area (the cellular hypercube interconnections are carry bit: c,01 = xl,, AND) r,.
space invariant which implies relatively low hologram Now, applying the corresponding parallel operations
complexity); it also enables images to be input to and of XOR and AND, i.e., the symmetrical difference Ax andoutput from the machine in parallel. intersection n, and shifting the set of carry bits by a

3. Binary Row-CoddIt hmetic dilation @, we can implement parallel addition by thetfollowing recursive equations:celliconryeadits(1) Define the initial states of images of sum bitsk + 1 bits, and binary multiplication of two k-bit and carry bits (called sum-bit image and carry-bit
numbers yields at most 2k bits. In this paper, we image) at time t as
assume that all input numbers are padded with enoughzeros to avoid the possibility of overflow. This also s(t) = x, C(to) = R. (19)guarantees that the different operands in the image (2) The recursive relation between the states of thewill be treated separately. A binary row-coded num- sum-bit image and carry-bit image at two adjacent
her is encoded in a part of a row of an image. Although time intervals is then
the word lengths of numbers do not need to be equal,we assume in with us that an image (bit plane) s(t, = S(t) A C(t,) = S() C(t,) u St,) -C(t,). (201
with N X N bits contains p/k numbers of k-bit lengthas a simple illustration (Fig. 5). In this section, we c(t, = iS(t,) c r(t,)s A i 

= S) C oe) r Ai (21)
describe parallel addition and multiplication by BIA where i = 0,1,2. k + 1, and the elementary image
expressions and the i p ra othe DOCIP ma- A-' is used to shift the carry-bit image one bit to the
chine. Subtraction is discussed in Appendix A. left for the next iteration.
3.1. Addition of Biry Row-Coded Numbers (3) After a maximum ofk + 1 iterations, the sum-bitConsider an image X [e.g., Fig. 6(a)] composed of NK/ image is the result and the carry-bit image is the null
k numbers x,, i = 1,2. '2 /k, an image R [e.g., Fig. image :
6(b)] composed of np/k numbers r, i = 1,2...,. N/k, = X + th C 5 ,,) = e g(22)
and the output of the addition S = X + R [Fig. 6(c)].os Ts is strt F 7 = RTo realize thisaddition in parallel by meansof BIA, we imis prcure ilatin Fig. the resul ofist boe te seariatly. Ay-p yr w-o dedm-additoparallel addition of binary numbers with a maximum

binary numbers s, = x, + r,. The first step of serial algbith cand bie impoemned the +CIros hisaddition is to add the least significant bits, say x,,i andinted n the
theure by the program (instructions) given belw. Md.wifM,, and M. represent the three N x N-bit memories.

least significant aits (half-adder) are M- denotes sr io y
sum hit; an,, d = x,,ul xo plr,, numbered line represents a single DOCIt machine
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instruction for one value of i. Comments are in brack- 0100 T00100
e ts . . . "

Assume start with X in M 1[=S(t)] and I? in ..

M.,[=('(to)].
First to kth iterations:

(I) At, t, , -M:,J= S(I) u (tl, 0111 000-00

(2) M 1 u M, M,[= S(t,) ((t,), C( =

(3) M, u M. U :, AM 21 =S(t,) u C(t,)],

(4) At, , M2 - M,= S ,, ,)], 011010 0

(5) At., a) A -
' A1.21[= C(t,,,) 1,

Sit~l =C(t )

wherei = 0,1,2 .... k - 1.
(k + 1)th iteration:

(l) M, u M, - M= S(tk) u (tl, 01 101 00000

(2) M1 Al ., - M I= S(tk) u (') 71,. I "

(3) A1 . A - out[ = S(t~ ) X + RI.

The total number of clock cycles for the execution of 01101 00000
this program on the DOCIP machine is t(k) :_ 5k + 3 = "00•0
0(k), which is independent of the number of words cUl =

being added.
In fact, BIA can be used to devise a parallel form of a

conditional-sum adder or carry-lookahead adder for
further extracting additional parallelism, and the exe- Fig. 7. Parallel addition of binary row-coded numbers (1I): The
cution time of this addition can be reduced to 0(log 2k). procedure for parallel addition X + R where X and R are shown in

Obviously, a trade-off exists between execution time Fig. 6, S(t.9) = S = X + R and C(t.5) =

and hardware complexity. This paper concentrates
only on some simple algorithms.

3.2. Multiplication of Binary Row-Coded Numbers . . .

Using the representation illustrated in Fig. 5, we
define a parallel (matrix-constant) multiplication of
an image set of binary numbers and one single binary
number X -R,, and parallel (element-element) multi-
plication of two image sets of binary numbers X X R.

Fig. 8. Parallel (matrix-constant) multiplication of binary row-
I. Matrix-Constant Multiplication X, R, coded numbers: (a) image X of operands; (b) image R, containing

Consider an image X [e.g., Fig. 8(a)] comprising N/ only a single number; (c) output X -R,.

k numbers x,, i = 1,2 .. N'/k, and a reference image
Rr [e.g., Fig. 8(b)] comprising only one single k-bit (1) Generating the term Xe A-1
binary number r = [r~k r(k). ... r0 2 . Theoutputof The DOCIP-array requires at most 1 _< k - 1 = 0(k)
the parallel multiplication is X - Rr [Fig. 8(c)]. To clock cycles, because
realize it, we first consider the serial multiplication of
two binary numbers that is the sum of the shifted A-' (A-')'

versions of the multiplier or the multiplicand. Then, A-' , A-' e... - A-1 , (24)
by applying the corresponding parallel operations and
parallel shifting by a dilation e, we can implement this
parallel multiplication by the equation x (t A- = I... [(X 0A-') 0 A-'l a... e A-'I"

X- t, = 'N XO@A', (2;)X R, X A2 The DOCIP-hypercube requires at most log.2 5
4log,(k - 1) = 0(iog2 k) clock cycles, because we can

where the sum notation Y refers to a sequence of rewrite 1 as a binary number I = [a(, 2IJ) ... a(I)lflL),.
parallel additions and the parallel addition + is de- and we have
fined in Subsec. 3.1. ,_,2-

The I)OCIP takes O(k '2 ) clock cycles for implement- = 1A
ing this matrix-constant multiplication. Its proce-
dure involves: A "' ( A o ... $A'
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Ll- 0. N 7 ,

.\1) ,...ll\ 6 A ... e -'''

where [loglJ is the greatest integer less than or equal to
10g21, and each dilation with A -aU)' can be implement-
ed in the DOCIP-hypercube in one single clock cycle.

The total time delay for generating all required X E Db,
A -', 0 < 1 < k - 1, is bounded by 0(k) for both the
I)OCIP-array and the DOCIP-hypercube. Since 00o 0 0 0;

X(1)A
-
'
= [X  A -

"
]  A -

'
,  (26) " "

we can generate the new term X 6) A -' by simply
deriving it from the previous term X ED A - 1-1) without
starting from the original X. The total generating , ,
time is then dominated by the number of terms X (D Fig. 9. Parallel (element-element) multiplication of binary row-
A -I which is at most O(k). coded numbers: (a) image X of operands; (b) image R of other

(2) Implementing the summation operands; (c) output X X R; (d) mask M; (e image u A-;

' X e A -  (f) image (R r) M ) f ul '-,) A-).

I.w, =1 (1) Generate X Q A -' and ?u M-R-A -:
The DOCIPs require at most k - 1 = 0(k) parallel Using an argument similar to that in Subsec. I above,the DOCIP-array takes 0(k) time and the DOCIP-

additions to implement this summation, and each par- I
allel addition requires at most k + 1 = 0(k) iterations hypercube takes 00lo 2 k) time.
(as shown in Subsec. 3.1). Since it takes 0(k) time for (2) Generater uM-e A'te ,|<-'-A-
generating all the terms X 0 A -', the total execution Thene ra taes k 1 ause
time of the DOCIPs for this matrix-constant multipli- The DOCIP-array takes 0(k) time, because

cation of k-bit binary numbers is 0(k) X 0(k) + 0(k) = k-1-- ( -
OW) -2LU A-' UA-J,0(k 2). From the example shown in Fig. 8, R, = I u A-2 -0 .0

contains only a single number r = (0101)2 = 5, and the -) A-i)
DOCIP can implement this matrix-constant multipli- A A A-A...o(UA- . (28)
cation X -Rr as follows: C- /

Assume start with X in Ml(= X (D I). k-1-1

( > 0, and each dilation by a term in parenthesesexecutes in one clock cycle.

(2) The instructions of the parallel addition are per- The DOCIP-hypercube takes 0(log2k) time, since
formed as shown in Subsec. 3.1: k_1_, [IoR (k-l 2]

U A-'= UA [6 (29)
M 1 + M 2 - out(= X- R,). 1-0 -0= LJ-0 J

II. Element-Element Multiplication X X R where k - 1 - 1 = [ailog2(k---1)j ... a(1)a(0)2, and again
each dilation by the term in parentheses executes in

Consider an image X [e.g., Fig. 9(a)] comprising N"2! one clock cycle.
k numbers x,, i = 1,2. N2/k, and an image R [e.g., It takes O(k) time for the DOCIP-array and 0(log 2k)
Fig. 9(b)] comprising N/k numbers ri, i = 1,2, ... ,r 2/ for the DOCIP-hypercube to generate the'term
k. The output of the element-element parallel multi-
plication is X X R [Fig. 9(c)]. Because the multiplica- (x e A-') u I[R-, (M e A-')] 0 UT_,-' A-1.
tion of two binary numbers is the sum of the shifted
versions of the multiplier or the multiplicand, applying (3) Implementing the summation
the corresponding parallel operations, we can imple- k-

ment this parallel multiplication by the equation ,_ X A
-
' U) R M e A

-
' 
I 

Uk--' A-!.

1-0

X x 1? = \ (Xe A-') nI(R n (Me A') e - 'A- ' The summation requires at most (k - 1) addition
operations, and each addition operation takes 0(k)
time on the DOCIP system. We also require 0(k) time-( for the DOCIP-array and 0(log2k) time for the DO-

- V Xe A-' R Me A - 
0 LJ2-' A-, (27) CIP-hypercube to generate each operand of the addi-

tion. Thus, for this element-element multiplication
where the mask M [Fig. 9(d)J is used to extract the of k-bit binary numbers, the total computation time is
Ih bit [where the 0th bit is least significant. and the 0(k) for the DOCIP-array and 0(k 2l0g2k) for the DO-
(k - I)th bit is most significant]. The l)OCIPs can CIP-hypercube.
implement this element-element multiplication by the Multiplication requires more than three memories.
procedure This can be accommodated by either building more
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nemory into the DOCIP machine or by swapping i_- N bit

termediate results into and out of an external memory. - . .............. Most sign
'
icant bit

In the latter case we assume the external memory can k b..t

be loaded and unloaded with one image in a single time l- Least signifcar! bit

step. In Sec. 4, binary stack-coded arithmetic also
requires more than three memories; we make the same N bgilength

assumptions on the use of an external memory.
For binary column-coded arithmetic, a number is

encoded in a part of a column of an image as in Fig. 10. -
All the algorithms derived in this section can also be
applied to binary column-coded numbers except that X
we replace the elementary image A- ' by a different Fig. 10. Binary column-coded numbers.

elementary image B for shifting the carry-bit image or
borrow-bit image in the vertical direction.

4. Binary Stack-Coded Arithmetic
In this case, a number is encoded in a stack of k -1) -

image planes with the least significant bit in the first . ,
plane, next least significant bit in the second plane, etc.
(Fig. 11). We assume all numbers including the re- T"

suits of arithmetic operations can be represented in k
bits, so that k images, each with N X N bits, contain N2.
binary numbers. Here, we describe parallel addition Fig. 11. Binary stack-coded numbers. x,(m) represents the mth
and multiplication by BIA expressions. Subtraction bit of the ith number in the image plane. X o0 represents the image
is discussed in Appendix B. plane of least significant bits and X(k-t represents the image plane

of most significant bits.
4.1. Addition to Binary Stack-Coded Numbers

Using the representation illustrated in Fig. 11, we
consider the parallel addition of two sequences of im- This algorithm can be implemented in the DOCIP
ages of binary numbers. Assume a sequence of images architecture by the program (DOCIP instructions):
X = [X(kI-,X(.- 2), .. .. ,X(mO [e.g., Fig. 12(a)i storing Assume start with X(o) stored in Ml and R(0 ) stored
AN2 binary numbers xi, i = 1,2,... ,N 2 , and a sequence in M2.
of images R = [R(k-,l,R(k- 2 , -... R(o)] [e.g., Fig. 12(b)] Calculate S0) and Con):
storing N2 numbers ri, i = 1,2,... N 2. Then the out-
put of the parallel addition is X + R = S = (1) M1uM2-M 3 &out[= C1,

[Sqi,S(k-) ... ,S(o)] as shown in Fig. 12(c). To realize
this addition using our three fundamental operations, (2) M1 UM2 M11=X 0

we implement an array of full adders as described by (3) M- U M2 Ma- - M21= X,, U R,0)1,
the equations

(1) The least significant bit planes of sum bits and (4) M1 u M 2 - out[= Slot.
carry bits are given by Calculate S(( and C(2):

15, X. R., , XX., R . (:30) (1) Xt -- M l ,

, X, = R .X , 1 ,,,. (31) (2) M, u M,, -- MI= X, , Q C,1,.

(2) The recursive relations: (3) M1 u M3A - M1 = X,11 C.

'S,,, = -k ,, A R,,, ax (',.)

= IX(,,,, R,, r-, C',I ,) IX. , ,,, , ,,, I, , X, - R,.,, , 'I, IX,, , R,,, Rio Coli,

= R1.1 u Cj , R,,, C1 [X,, (' , R, u C, X, , R, u C , (:32)

c .,, = IX,, r, r l, 11  lX, ('I , ,., , ('10,

= [X,,, ,,, u IX,, , C,, t, l.

where i = 0,1,2,... k - 1.
(3) The final solution is

X + R , S = lSS, i .I. S (34)

where S(k= ('=C) because Xl, = Ri,, = 0.
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(,) hH, AlM.(4) At, A. t, - AII= -N11 ,0 1

(7) A41  At. , ,

(12) C,1 , AtM ,

(13) Al t , ,M - ,

Fig. 12. Parallel arithmetic with binary stack-coded numbers:
(14) M., u M:, Af,, (a) sequence of images X = IX(:,,X2(2.XjIX 1 l]; (b) sequence of

images R = II:,,R, 2,RI),RoJ]; (c) sum X + R =
(15) X,1 ,---M,, IS,4 .S, 1 1.:,S ,t,S, oil; (d) difference D - X - R =

(16) M At, .M,,. [D,.D(,j),.DI,; (e) product M = X X R = -M ,M-, ... M 1 .

(17) At. j - M, & (,utl= C',1 . Recently, the use of symbolic substitution as a basis for

Calculate St2) to S(.-I) and C(:I) to C(k): digital optical computing has been reported in Refs.
Use the same instructions for calculating S(1 ) and 17-19 and 25-32. Special symbolic substitution rules

C(2) except that X(I) and R(I) land S(1 ) and C(2)] are can be applied to perform arithmetic operations and
replaced by X,) and R(i (and S 11 and C1 +1l] in each simulate a Turing machine.1 9 Symbolic substitution
iteration,andinthebeginningofaniterationthemem- demonstrates the ability to solve any computable
ory M:j stores C(,) instead of Cm, i = 2,3 .... k. problem and performs many operations. Here we for-

The complete execution of this operation in the DO- malize symbolic substitution by BIA algebraic sym-
CIP requires t(k) < 17(k - 1) + 4 = 17k - 13 = 0(k) bols, demonstrate that symbolic substitution rules are
clock cycles. Additional parallelism could be extract- particular BIA image transformations, and give the
ed to further reduce the execution time by utilizing BIA formal notations of binary symbol-coded (sym-
carry-lookahead techniques or by optimizing the bolic substitution) arithmetic.
above program. 5.1. BIA Representation of Symbolic Substitution

4.2. Multiplication of Binary Stack-Coded Numbers In this subsection we give the BIA equation for sym-

Let the result of the parallel multiplication be X X R bolic substitution and show how it can be implemented
= M = [M(2k-I),M(2k-2), .... M(0)] [e.g., Fig. 12(e)]. on the DOCIP machine. A symbolic substitution rule
Since binary multiplication is equivalent to the addi- involves two steps: (1) recognizing the locations of a
tion of shifted versions of the multiplicand, applying certain search-pattern within the 2-D binary input
the corresponding parallel operations, we can imple- data, and (2) substituting a replacement-pattern wher-
ment the parallel multiplication by the equations

X I ? = V= I,, 
1 

", p" + 
1  

+ 4 .. + ilk 1).

where i = 0,1 . h - 1, and the addition + is defined
in Subsec. 4.1. Since this parallel multiplication re- ever the search-pattern is recognized. We derive it by
quires at most k - I additions, each addition takes BIA in the following steps (illustrated in Fig. 13):
0(k) time for the DOCIP, and each 1I can be generat-
ed in 0(h) time, the total execution time is 0(k) 1. BIA Notations for Symbolic Substitution

2-I) binary input data = image (bit plane) X.
5. Symbolic SubsltutJ and Binary Symbol-Coded Symbol to be recognized (search-pattern) = refer-
Arithmetic ence image (or image pairs) R.

Symbolic substitution was first considered as a Symbol to be replaced (replacement-pattern)= ref-
means of utilizing the parallelism ofoptics by Huang. crence image Q.

15 March 1989 / Vol. 28, No 6 / APPLIED OPTICS



e11t 
4
.[ M . " T 1lotm DI

P , ., F.4 -o®, oxou , -10.(

a4 lol"iI
*0 ~ OR =R) fl F [ION..X \'To OR X0R)BQ ig 4. Svimbolic so hst ituition system with p sym bo! ic so lst it Uti ion

H 1 1 3. Symbolic Substitution System (Fig. 14)
To work with more than one rule (say p substitution

u rules) for practical applications, a symbolic substitu-

Fig.13. lIA representation ofsymbolicsubstitution. Theoption- tion processor produces several copies of the input X,

al mask At is for controlling the block seach region. provides p different recognizer-substituter units, and
then combines the outputs of various units to form a

2. Symbolic Substitution Rule new output. Thus, a symbolic substitution system is

Step 1. recognition of the search-pattern: implemented by

(a) Foreground recognizer: the locations of a cer- U IX@R1'l ] e Q1 . (43)
tain spatial search-pattern R, (defined by its fore- =I

ground) within the foreground of the 2-D input data X where Rh) and Q(i),i = 1,2 .. p, are the reference
can be recognized by the erosion operation ofX and RI: image pairs and replacement patterns in the ith sym-

X e R, = Xe fi, (3S) bolic substitution rule. This, then, is the BIA formula
for general symbolic substitution.

(b) Background recognizer: the locations of a cer- Hence, a general mathematical formalism of sym-
tain spatial search-pattern R,2 within the background bolic substitution has been developed. For a local
of the 2-D input data X can be recognized by the search-pattern and replacement-pattern (i.e., R1 ,R9 ,Q
erosion of X and R 2 : c Narray or Nhvpercube), the DOCIP-array or DOCIP-

X e R2 = X A/ 2. (39) hypercube can implement a symbolic substitution rule
in four (or five with the optional mask) steps:

(c) Full recognizer: by combining the two above Assume start with X in MI.
steps, the locations of a certain spatial search-pattern
R = (R1 ,R 2) (RI defines the foreground, and R 2 defines (1) M, 0 A1  M 2 ,

the background) within the 2-D input data X can be (2) M,.A,
recognized by the hit or miss transform of X and R:

X(5 R=(XO)R n (X O R .,) = (X e i?,) u (X e l , ). (40)() : M,

Step 2, substitution of the replacement-pattern: ( M:, aQ - outl= (X®R) D QI.

Substituter: a new replacement-pattern Q can be Let the pixels used in the substitution rule(s) of a
substituted for R wherever the search-pattern R is symbolic substitution processor be the neighborhood,
recognized by the dilation of X O R by Q. N_ of the processor. We see from the above steps that

Synthesis: the DOCIP can simulate the symbolic substitution
A complete symbolic substitution rule is implement- processor in constant time if the two machines have the

ed by the hit or miss transform of X by R followed by same neighborhood. If N is not a subset of the DO-
the dilation by Q: CIP neighborhood, the simulation will take longer. In

X(.)R) Q = ) X o e • either case, it is not presently known how many steps it
takes the symbolic substitution processor to simulate

=(Xei A,),, (Xe R.) q. (41 the DOCIP.

Optional masking: 5.2. Binary Symbol-Coded (Symbolic Substitution)
An optional mask M can be used for controlling the Arithmetic

block search region. A symbolic substitution rule can A bit in a binary number is encoded symbolically as
be modified as pixels of an image (Fig. 15). In this subsection, we

1(X(R) 1r, M 0 Q. (.121 primarily concentrate on single-pixel coding: a logic
value (0 or I) is represented by a single pixel (dark or

By proper choice of M, the search can be made in bright) IFig. 15(a)], as in the binary row and stack-
overlapping, disjoint or noncontiguous blocks, coded number representations, but the operands of
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Zero Oe Zero

b) (,) . . .. ..~ 0

Fig. 15. Bit encoded as a symnbol: (a) single-pixel coding of zero
and one (a bit is a pixel); (b) two-pixel coding of zero and one (a bit is
encoded as two pixels) (adapted from Refs. 18 and 19); (c) six-pixel
coding of zero and one (a bit with value zero or one is encoded as six

pixels) (adapted from Ref. :31). (b) W

Fig. 16. Binary symbol-coding (symbolic substitution) binary
binary numbers x, and r, are stored in the san'- input arithmetic): (a) input image X contains the operands x, and r,:

image X as shown in Fig. 16(a). The expected output (h) output of parallell addition; (c) output of parallel subtraction.

images of symbolic substitution for binary addition
and binary subtraction are shown in Figs. 16(b) and
(c). To achieve these desired operations, the symbols
associated with the operands are recognized and then
replaced by new symbols associated with the results of
the operation. Systems for implementing binary ad-
dition and subtraction are formalized and illustrated
as examples of binary symbol-coded arithmetic below. 10110 Rule 1. 0 --

at. Rulo2 0-s5.2.1. Addition of Binary Symbol-Coded Numbers M, " Rul 2 -oCarry t 0010

This parallel binary addition (Fig. 17) can be imple- um bts 100o, Rule 3. 1-6-0,cafny Ilt 000oo

mented with four symbolic substitution rules (Fig. S.,r, 1. ,0, (a, Rule 4. -o'

17(a)]. 7 ,I8 In the case of single-pixel coding, as we will (a)
show, Rule 1 is not necessary. The symbolic substitu- ule 2 i Rul,

tion system for single-pixel coding can be realized as E E]
0.; 0on.qr v = 1 )401 B Q01

Yuld X, (44) a Ir u.8 Q... e

4

Y() )= j U lYa,)® R1111 n Ml6 Q01 (45 E U Rule 4[I ___ L
where Y(tk. 1) isthe resultj = O,1,2 .... h+ lk isword = - B. 4'= 1 Q . I a,', A!E'.r4'= 4 8

size (i.e., the number of bits in an operand); R111 = (b)

IR'",RP ] and Q1t1 are shown in Fig. 17(b) and repre-
sented as

(2) R'1' = v
, 

R
2
' = Q11 =

(3) i
1  

= 1, R '2" . Q1r' = k-5 .. (c)

(4) Rf = U,' Q"' , - 4 .

Here the null image 0 and the elementary images are
as defined in Subsec. 2.1; the mask M IFig. 17(c), used
for controlling the block search region, is the image
corresponding to the coordinates of the origins (lower-
left pixels) of the input symbols in the input image X. gdeAn xamle s gvenin ig.17(). otetha Q1 I = Fig. 17. l'arallel addition of binary symbol -coded ne ubers:An example is given in Fig. 17(d). Note that Ql 1)=

implies i a) four symbolic substitution roles for addition; (h) reference image
pairs R' and reference images Q1',t = 1,2,3,4. used for addition: (q

i '

SI' ')R I ( R"I r ). (MI)i0 is a null image. Rule I is not needed for this single-ixel toding,
(c) mask Af; (d) example of parallel addition (if binary svnbol -coded

sto that numbers.
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Fig. 19. Symbolic substitution hinary addition with encoding a fit
as six pixels (adapted from [lef. 31).

___________ 3) R,"= I u 10, 1?!;1' R, Q' B u3 A 'B2,

I I ~ ~~~~~(4) R,
'
)
= 

B _ B
:
'
,  

R !,11
=
! H" 4=I..a I

and the mask M is shown in Fig. 18(b). Since

[Y(t,) 0( f'f" u IY(t,) e R"I = [Yt,) (D l*

Fig. 18. S"ymbolic substitution binary addition with two-pixel cod- )(t,) ( R!"l. (49)

ing: (a) reference image pairs I?- and reference images Qt1J =
1,2.34. used for addition (with two-pixel coding) (adapted from for the two-pixel coding, R('1 can be represented by

Refs. 18 and 191. (h mask U. only its foreground RI'" or background RPI, . For imple-
mentation on the DOCIP, this algorithm requires four
rule-, and each rule involves two dilations and one

[ . .. Munion or intersection. Because they may be not in-
(-,=.' l[YY(. I cluded in N,,ay or Nhy., ,o , each dilation of R(') or Q( i

IY(t) R , At! 0D q"' is implemented by 2-4 steps for the DOCIP-array8 and
1-2 steps for the DOCIP-hypercube8. The total exe-

- '1'"d: I CY(t,)@ ' " tlY)t,)® L' ,- MI 0 Q"' cution time is bounded by 28(k + 1) for the DOCIP-
(47) array8 and 18(k + 1) for the DOCIP-hypercube8.

for single-pixel coding of symbolic substitution, Moreover, it requires more difficult two-pixel codingThus, frsnl-iecoigosyblcsbtttn, and doubles the device area.

we can reduce the four rules of binary addition to only With six-pixel coding [Fig. 15(c)J t t the mask M is

three rules. However, this reduction of complexity not needed and

cannot be applied to two-pixel (i.e., dual-rail) or six-

pixel coding. Y(t5 U I0()) (50)
When implemented on the DOCIP, this addition 1,Q

requires at most k + 1 iterations, each iteration requir- wherej = 0,1,2,. k,k is the word size; R01 = [RR ) RJ
ing two union operations of three results of symbolic and Q(i) are shown in Fig. 19 and are represented as

substitution rules, and each rule is realized within five
steps as shown in Subsec. 5.1. Thus, the total execu- (1) R'1 = 1 u AB u B AB

:
'.

tion time in the DOCIP is R,'," R B' u A oAR (BJ A
213').

t(k) !5 (3 x 5 + 21(k + 1) = 17(k + 1) = (k). Qi = A'B 2  
A -W' , I ARB

When using two or six pixels to represent a logic value ,-,=, AA.
[Figs. 15(b) and (c1, we can formalize symbolic substi- (2) = (U; 13') A a A.
tution addition as follows. R!'2 2 I ' U, 1 Al)') A 2j-'),

With two-pixel coding jFig. 15(b)},t ' we can imple-
ment a full recognition with only a background recog- Q '-" A-:'B' A-'11' u B A.

nizer (or foreground recognizer): (3) RI1" = I ,) 3 u ,' U, AIR).

t, .. .IIY(tI(*' , MI0 " R 2(vJ2 1') u A j A'  (, J ,, A2
t').

=, I .,, iYftI,( ' . jY (, l') l '' M i D Q 1 (0i' = A-:'B' u A-2B' , 13 A.

I Ylt,) C.1' Al) 0 Q ". (48) (4) I'11 = B u 1:'u A u AR:.

where j = 0,1,2,... ,k; R11 = [Rt,t ,OI" and Q111 are R' = Iu B2 kiAB I A l',, ( 'B,,'.

shown in Fig. 18(a) and represented by elementary Q(41 = A -:'B l A '' , I AR.
images as

B 11', 1 ., A The six-pixel coding removes the need for the mask M,
' Abut requires more difficult encoding, more difficult

(2) R'I 8', t
' 

'= I 1 '. (J' R,, A 'R , implementation of the hit or misstransform by R"I and
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dilation ly Q'I, and six times the hardware area. Ad- smallest overall 0 x P complexity (assume each paral-
dition on the l)OCIP-array or l)OCIP-hypercuhe us- lel fundamental operation corresponds to P processing
ing six-pixel coding takes much more time (a factor of elements executing in parallel). For the normal case
more than 10 times) than the time required for single- in which the word size is larger than one and much
pixel coding or two-pixel coding. smaller than the image size (0 < k << N), binary row-

coded arithmetic can be iml)lemented in the DOCIP
6. Complexity of Parallel Optical Binary Arithmetic with the fastest computation speed (assume the DO-

We have shown that BIA offers a general tool for CIP can input all operands in an image at a time). For
mapping serial binary arithmetic into different forms implementation on the DOCIPs, the complexity of
of parallel binary arithmetic (including binary row- binary symbol-coded (symbolic substitution) arithme-
coding, binary stack-coding, and three coding tech- tic is in all cases higher than that of binary row-coded
niques for symbolic substitution arithmetic) in a pre- and binary stack-coded arithmetic. For implement-
cise and compact way The complexity of parallel ing symbolic substitution algorithms on the DOCIPs,
addition and subtraction of two N X N arrays of binary the single-pixel coding is superior to the other symbol
numbers (each number with k-bit length) for these coding techniques.
different number representations are compared in Ta-
bles I and II. Binary row-coded arithmetic requires 7. Conclusion
the smallest number 0 of fundamental operations. Optical computers can operate on 2-D planes of data
Binary stack-coded arithmetic requires the lowest in parallel. Boolean logic equations do not provide a
number of processing elements (or cells) P and the complete description of such parallel operations for

binary arithmetic. An optical system that operates on
planes of data should employ an inherently parallel

Table I. Complexity of Parallel Optical Binary Addition of Two N X N mathematical description for its arithmetic. In this
Arrays of k-Bit Binary Numbers, Each Parallel Fundamental Operation mathe s cry i s ara IA this

Corresponds to P Processing Elements Executing In Parallel paper we use binary image algebra (BIA) to develop
parallel numerical computation algorithms, and to de-

Sya Cot Sus,ol scribe the execution of these algorithms on a digital
Rep-o.nlt~on Row-codl, Slack6ng two-poop..1ptica image. ,. ..) dwo.... optical cellular image processor (DOCIP) architecture.__od_______)__coding)

No of D k 9(k.1 8(k.) BIA is demonstrated to be a general technique for
(or Eroso) developing and formulating parallel numerical and

o Ol lo 4k.3 ,6k ,2 15(k.1) 16(k.1) non-numerical computation algorithms for digital op-(or Intersaclaars)

No d 7.4 2.,3 ,2(,., , tical computers. The DOCIP is a simple optical archi-
co"' .... -2.2 '7k_ 3(,.1 tecture for effectively implementing BIA. Symbolic

Tot, N. O r 2.3l6 substitution is a subset of BIA and can be formalized inF undan'kenal 0 12k.7 .36k 25 36(k. 1) .40(k. 1)

o.5s 2317 '27(k.1) 28(.1,) compact BIA expressions. Three different techniques

.r.S.g P k W 2kW 46 for parallel optical binary arithmetic, based on binary

otal 36kO 25N' 766.6 6066.66 row-coding, binary stack-coding, and binary symbol-
Co1,0t...e .1' )7k.51 -(22k 16M 54k(k.1)WN "12kk.,M' coding (symbolic substitution), are illustrated for im-

OCP T 5k.3 ,IN 13 17(k. .o plementation on the DOCIP. Binary row-coding
E,&cotor, T.- 28(k'1) arithmetic has fast DOCIP execution and binary

PT (5k.3kN' (1 7k,13J 34k(k.l)N 'j2k.)'1 stack-coding arithmetic requires the lowest number of
-or~c.. the n.. o .per1.... whe .eo.o ......ero .. also allowed computations 0 X P. In summary, BIA and the DO-

CIP represent a simple yet powerful parallel digital
optical algorithmic and architectural technique for

Table II. Complexity of Parallel Optical Binary Subtraction of Two N X N both numerical and non-numerical applications.
Arrays of k-Bit Binary Numbers
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p N N 2k 41,N' Appendix A: Subtraction of Binary Row-Coded Numbers
(IlolNo I 0 .. ( 3 336 46kk.66 I , 160k. Let the output of the parallel subtraction be D = X -

, tor..., I. ,k ?6 N' 1"", 6 W. ) ,12k(k ,,N' R [e .g ., F ig s. 20 (a )- (c )]. T o re a lize it, w e first co n sid e r

...P1 k. 1 Ik., Fil ' r) the serial biniary subtraction of 2 binary numbers d,I78(k, II I
,28kk.-l. 0, x, - r,. The procedure in the least significant bits X,,0

P., (4.0,,,. W 0II 1 2,rk,.N' I ,,2k.IN, and r,,, of binary subtraction generates a difference
. . . . . . . . .. . . e to o n .n d .. .. .. . ...... .a llo w e d ..i t d ,( , a n d a b o r r o w b i t b , , . T h e B o o l e a n l o g i c
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equations for subtracting the two least significant bits
(half-subtractor) are 00bo 01001

difference bit: s,, = .,,,, Xo(i r,1 ,

bonrrow bit: ,,= X,,, AN) r,,.

Now, applying the corresponding parallel operations
and shifting the set of borrow bits by a dilation E, we ja-

can implement the parallel subtraction as follows: 010 01 00000
(1) Define the initial states of images of difference

bits and borrow bits (called difference-bit image and D,, .

borrow-bit image) at time t,, as

D(t ,) = X. B(tm) = R. (51)

(2) The recursive relation between the states of the 001 00000 .

difference-bit image and borrow-bit image at two adja-
cent tim e intervals is D(,= .B(,=

l)(,, I)  M )t,) a B(t,) = l(t,) k). B(t,) u. D(t,),, 11(t,), (52)

Bt, = II)(t,) n BU,)] o A = t,) , B(t,) D A
-
'. (53) dl

Fig. 20. Parallel subtraction of binary row-coded numbers:

where i = 0,1,2,. k + 1, and the elementary image (a) image X of operands; (h) image R of other operands; (c) ouput
A-I is used to shift the borrow-bit image one bit to the X - R; (d) procedure for parallel subtraction X - R.
left for the next iteration.

(3) After a maximum of k + 1 iterations, the differ-
ence-bit image is the result and the borrow-bit image
becomes the null image 0: sponding parallel operations, we can implement this

parallel subtraction by the equations
l X - R. B(t ) = . (54 (1) The least significant bit planes of difference bits

This procedure is illustrated in Fig. 20(d). The result and borrow bits:
of parallel subtraction of binary numbers with a maxi-
mum k-bit word size is obtained after k + I iterations. D(0) = X(0 ) A Rio ) = X_(01 Ri, u R(0 u X10,  (55)

The DOCIP architecture can realize this by the follow- B4 H= x 0 , R(0 ) = X(01 R,0). (56)
ing program (instructions):

Assume start with X in Ml[ = D(t0 )] and R in M 2[= (2) The recursive relations:
B(t 0 )I. D,,) = lX,, , R,, r- B,,l u IX_ R,., B,

First to kth iterations: , [X ,, n R(,, r, B(,,] v [X(, , R(,, r, B(,j

(1) MA u U., - M:,= D(t,) u B(t,)l,
= IX(,, u R,,, c, L u [X( u k, u B,)(2) M u M ,. - M ,=  D(t,) u B(t,)]X.(2)"Al v M [XD, u R,,, u B,,,] u , R,, ,. B]. (57)

(3) M j M - -, D~,,,)B(,,) = [Xj, r, R,, B,,) u IX, n r R, , 1,11

(4) M, 0 A -' AjI[= B(t,, I. u, IX,, c R, - B,, IX,., - R,, - Bc ,

where i = 0,1,2 . k.. h - 1. = IX,, u R,, , B1,, [X, u R,, B,

(k + 1)th iteration: [X,, R,, 1/,1> IX,, R,, C /1,]. (55)

(I) M, u M , -M1 = I)(t ) U B(tk)], where i = 0,1,2 . . h - 1.

(2) M, k M.2 - M,[= )(t,) U m(t), (3) The final solution:

(3) M, M. M, -M[ (t )= X - R1. X-I) = I) I ,l .. 1. (59

The total number of clock cycles in the DOCIP to' This algorithm can be implemented in the DOCIP
complete this subtraction process is t(k) < 4k + 3 = architecture by the program (instructions):
0(k). Assume start with XLo) in M, and R,)) in A1.

Calculate D() and B():
Appendix B: Subtraction of Binary Stack-Coded (I) , U, M& out B,
Numbers

Let the result of the parallel subtraction be X - R = (2) M, u M., M, I= X, , R, ,

1) = -I1 1,D(, -2.), u ))l le.g., Fig. 12(d)j. To real- (3) M, U M:, out I
ize it using the three fundamental operations, we con-
sider a serial full-subtractor. Applying the corre- Calculate D(I and B(2):
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(1) X, Al1 . 03100 R,o 1I -

O l.,onc. 5s 0011"l Rule 2 ilBorrow olts ... ±.
(2) All , A t,, Ot.,.n. , 0001

Sorrow ss 0O11 Rule 3 - 0'
04111-M.c w)s -T 000

(:I) Ol 0.,.OC NIS 3000'e 0

(4) ,, 0,~ ,.~

(5) M,, .Af, - B?,lR R e .. 2 -

(6)° --t, o Af, - t; -
(.') Af, ". All1  At,, Rule 1 E l Rule 2 0 -_ _4

(7) Al., Al, -All. (b) Rso(8) 1h' - .

(9) A, All - M. b

(13) B,,, -- A. A ,(14) M, AM., - M:,,
(12) M, A, -AOlu.
(13) B1, -. Al. J-5

,14) M1 ,_,M:1 -M:,. """

(16) X ,, - M. ,

(17) M At , -AfM, (d)

Fig. 21. Parallel subtraction of binary symbol-coded numbers:
(18) R,,, - M:, (a) four symbolic substitution rules for subtraction; (b) reference

image pairs R1" and reference images Q",i = 1,2,3.4, used for sub-
(19) A1 U MI -A Ml,. traction; because Q"l and Q'

4
) are null images, Rules 1 and 4 are not

(20) All U - M., & out J= B(2)]. needed for single-pixel coding; (c) mask M; (d) example of parallel
subtraction of binary symbol-coded numbers.

Calculate D(2) to Dk-n) and B(;,) to B(k):
Use the same instructions for calculating D(I) and

B(2) except that X(I) and R(1) [and D(I) and B(2)] are (2) R(2 = B
-
, R(

2
1 = I, Q2) = I

replaced by X(i) and R(1 ) [and D()) and B(i+i)] in each

iteration, and in the beginning of an iteration the mem- (3) R(1') = 1, R 1 ) = B-
1, Q1 1: = I,

ory M 3 stores B() instead of B_1, i = 2,3,... k. (4) R CI = u,.3.-', R(41 = Q. Q4 
= a.

Therefore, the total execution time in the DOCIP to

complete this parallel subtraction is t(k) <_ 20(k - 1) + where the null image 0 and the elementary images are
3 = 20k - 17 = 0(k). as defined in Subsec. 2.1; and the mask M [Fig. 21(c)] is

a shifting of the mask for binary addition. Because
Appendix C. Subtraction of Binary Symbol-Coded Q() and Q(41 are null images, and the dilation of a null
Numbers image is a null image, Rules I and 4 are not needed for

Similar to addition, we gradually use 4 symbolic simple intensity coding. Figure 21(d) gives an exam-
substitution rules [Fig. 21(a)], but Rules l and 4 are not pie. The execution time for the DOCIP is t(k) <
necessary for single-pixel coding. The symbolic sub- ll(k + 1) = 0(k).
stitution system using single-pixel coding for binary Similar to binary addition, we can dvelop symbolic
subtraction can be realized as substitution binary subtraction algorithms with BIA

1(t) X, (6)0) representations for coding a symbol with two or six
pixels. However, four symbolic substitution rules are

Y)t,) = , Y(t)() R?", M (Q'D still required beca.use Q"I) and Q141 will not be equal to
S eethe null image. The DOCIPs take approximately the

,. I Y(t, 0 a')')l , [YO) 0 A 0 M same execution time for binary subtraction using two-

II Y(t,) R ' " IY(t,) ( R!,"'I (, (1 9 Q"', (61) pixel or six-pixel coding as for binary addition.

where Y(tk+I) is the result of the subtraction, j References
0,1,2 .. k, k is word size (i.e., the number of bits in an 1. A. A. Sawchuk and 'T. C. Strand, "Digital Optical Computing."
operand); R") = R,"O ')J and Q(11 are shown in Fig. Proc. I EE 72,758 (1984).
21(b) and represented as 2. Special Issue on Optical ('onlmuting, Proc. IEEE 72, No' 7

(1984).
qI) RM''=,t,, IlY, = ,,', /) ..5. 3. A. Iuang, Y.Tsunoda.1. W.G(odnsan, andS. Ishihara.Optical
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Abstract

In this paper we present a two-dimensional cellular hypercube architecture for image processing that combines
features of the conventional hypercube and cellular logic architectures for 2-D computation cells. A unified theory
of parallel binary image processing, binary image algebra (BIA), serves as a software too] for designing parallel
image processing algorithms. To match the hardware to the software, we characterize the cellular processors
using the same algebraic structure as BIA. The two-dimensional cellular hypercube image processor is a cellular
SIMD machine with N 2 cells and has a simple overall organization, low cell complexity and fast processing ability.
An optical cellular hypercube implementation of BIA is proposed which offers parallel input/output and global
interconnection capabilities which are difficult to do in planar VLSI technology.

I. Introduction

Image processing and image analysis tasks have large data processing requirements and inherent parallelism.
Parallel cellular logic architectures are generally considered appropriate models for parallel image processing. The
cellular logic computer was first inspired by the writings of von Neumann [1][2] on cellular automata. The first
highly parallel cellular image processor was suggested by Unger [3][4]. Unger proposed and, later, simulated a
two-dimensional array of modules ( or processing elements or cells) as a natural spatial computer architecture for
image processing and recognition. In this approach, each computational cell is responsible for one pixel (or one
element of an image) with its neighboring pixels. A cellular logic (or neighboring logic) operation is then referred
to as a transfo-m of an array of data X(ij) into a new array of data X'(i,j) where each element in the new
array has a value determined only by the corresponding element in the original array along with the values of its
neighbors. Fig. 1 shows a typical conventional nearest-neighbor connected cellular logic architecture. Some review
of cellular image processors can be found in Ref. [5]-[8].

Connections In the 4-connected cellular array

) Connections In the 8-connected cellular array

Figure 2: A cv~pntionhl hypercube (4-cube) laid out

Figure 1: A nearest-neighbor connected cellular logic in two dimensional space. Its interconnections have
architecture. Each retangular box represents a corn- no spatial invariance.
putation cell.

One important problem in cellular image processing is that the nearest-neighbor connected cellular image pro-
cessors have poor communication capabilities and no unified systematic theory for both parallel image processing
algorithms and architectures. Section 2 suggests a cellular hypercube architecture to improve the communication
capabilities of cellular logic computers. Section 3 summarizes a binary image algebra (BIA) to serve as a unified
binary image processing theory for both algorithms and architectures. Section 4 discusses a digital optical cellular
hypercube image processor, DOCIP-hypercube, for efficiently implementing BIA.

tSupported by the Air Force Office of Scientific Research under grant AFOSR-84-0181 and by an IBM graduate feowship.

*Froni Applhclson.' of Digital Image Processing X, Proc of SPIE-The International Society for Optical Enginteeriig.
V l 8'29. Sani l)igo, California, August, 1987.
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2. Cellular Hypercube Architecture

Conventional nearest-neighbor connected cellular arrays have poor communication capabilities; their perfor-
mance is primarily limited by their 0(1) interconnectivity. To improve this while preserving a reasonable number
of interconnections, ideally a conventional hypercube incteases the interconnectivity to Oog02 M) for M process-
ing elements (PEs). (We refer to a PE in a cellular computer as a cell which usually has no address and index
registers.) A conventional SIMD hypercube computer is comprised of A = 21 PEs, where I is a non-negative
integer. All the PEs are synchronized and operated under the control of a single instruction stream. They are
indexed 0 through Al - 1 and the pth PE is referred 7 PE(p) for p E [0, Al - 1]. A hypercube is denoted as a
i-cube where I = !og 2A represents the number of directly connected PEs. Let PI-IPI-2...po be the binary repre-
sentation of p, and let 1(b) be the number whose binary representation is pl-I...pb+P'bpb- ....po, where F6 is the
complement of pb and 0 < b < 1. In the hypercube model, PE(p) is connected to those PE(p(b)) for 0 < b < I (i.e.
a direct connection exists only between processors whose binary indices differ by one bit position), and data can
be transmitted from one PE to another in one step only via this interconnection pattern [91. The worst case for
an inter-PE communication requires o92 Af routes.

Connections in the 4-directed cellular hypercube

Connections In the 8-directed cellular hypercube

Figure 3: A two-dimensional cellular hypecube- DOCIP-hypercube, Each cell is interconnected with other cels hav.ing
a relat~e one bit difference in coordiate label in positive or negative zr and pI directions to achieve a spatially symxnetric
aid invariant interconnection pattern. Only connections from the central cell are shown; all cells are connected identically
so the resulting interconnection~s are spa~e invariant.

However, when a conventional hypercube is laid out in two-dimensional space (e.g. Fig. 2 gives a 4-cube), its
interconnection patterns are not space invariant; such spatial invariance is desirable for image processing and for
simple hardware implementation. To include this, we increase the interconnections to make a two dimensional
cellular hypercube (Fig. 3). The cellular hypercube introduces a symmetrical positive and negative index so that
each cell is connected with cells having a relative one bit difference in coordinate label in positive or negative z and
y directions; the numerical difference of addresses of connected cells is nonzero in at most 1 bit. A two-dimensional
SIMD cellular hypercube computer consists of M = N 2 

- (2n - 1)2 cells and's = 2*, k is a non-negative integer.
They are indexed (-n4- 1,-n + 1) through (n - l,n - 1) and the (q,r) 5 cell is refered as CELL(q,r) for
q, r E f-n + 1, n- 1]. In the 4-directed cellular hypercube (cellular hypercube4) model, CELL(q, r) is connected
to those CELL(q 4- 2J,r) and CELL(q," 4- 2'd) for 0 < d < k; and in the 8-directed cellular hypercube (cellular
hypercube8) model, CELL(q, r) is connected to those CELL(q 4-2 d , r), GELL(q, r 4-2d) and CELL(q4. 2 , r 4-2 d)
for 0 < d < k. Data can be transmitted from one cell to another in one step only via this interconnection pattern,
although it occurs in parallel for each pixel. For N 2 = (2n- 1)2 cells, the worst case for an inter-cell communication
requires 21og 2n or 41og2n (they are O(log2 N)) routes for the 8-directed or 4-directed cellular hypercube repectively.

This cellular hypercube architecture requires a 3-D global interconnection mechanism which is difficult to
implement on a planar VLSI chip [7][10][ 11]. However, in principle, the 3-D interconnection mechanism is realizable
by digital optical systems, because the general architectural structure of a digital optical computer is inherently
3-dimensional f12) [13]. Thus, a digital optical cellular image processor based on the cellular hypercube architecture

El--- E-3 [E]muwmmm Lljm I l



(DOCIP-hypercube) is a possible implementation.
To develop a two-dimensional image processor, we face the problem that image processing has no standard

unified theory, and so many image processing algorithms and architectures exist in a state of chaos. Thus, we
first discuss a simple unified consistent theory of image processing (covering both algorithms and architectures) in
section 3, and then consider its optical implementation on a digital optical cellular hypercube processor, DOCIP-
hypercube, in section 4.

3. Binary Image Algebra

An algebraic structure provides a theoretical fiamework of image processing because algebra is a foundation of
mathematics, computer language and automata theories. During the past few years, numerous papers have used
an algebraic approach to aid in image processing [14]-[19]. Here, a binary image algebra (BIA) is summarized to
serve as the software theory of cellular image processors.

3.1 Basic Definitions

In general, a binary digital image is defined as a function f mapping each grid point (z, y) of the picture on an
orthogonal coordinate system onto the set composed of 1 (white, i.e. image point) and 0 (black, i.e. background
point). However, to have a better compact parallel representing form of a binary image, we can use the coordinates
of image points ('l's) to specify an image. In this paper, an image is treated as the set of coordinates of image
points (set of pixels that have value 1). We begin the description of BIA by defining our artificial universe:

Definition 3.1 The Universal Image: The universal image is a set W = {(x, y) I x E Zn,,' E Zn}, where
Zn = {0, ±1, ±2,..., ±n} and n is a positive integer. Thus, all images are defined in a (2n + 1) x (2n + 1) array of
points.

Definition 3.2 Image Space: The image space is the power set (the set of all subsets) of the universal image,
i.e. S = P(W).

Definition 3.3 Image: A set X is an image if and only if X is an element of the image space S, i.e. X is a
subimage of the universal image W4".

Definition 3.4 Image Point: A point (z,y) is an image point of an image X if and only if (r, y) is an element
of the set X.

Definition 3.5 Image 7ansformation: A transformation T is an image transformation if and only if T is a
function mapping from the image space S to the image space S.

Definition 3.6 Three Fundamental Operations
There are three fundamental operations:

1. Complement of an image X: X = {(z,y) Y (z,,) E W A (z, y) V X}

2. Union of two images X and R: X U R = {(z,)(z,) E X V (z, Y) E R}

3. Dilation of two images X and R:

X X + Xz 2, 1+ 2 ) EW I (Zi )EX, (z 2 , 2 )ER} (X A (RXeR= otherwise

Remark: "E" means "belongs to", "A" means "and", "V" means "or", and "0" is the null image having no
image point. Note that X usually represents an input or data image and R is a reference image. We can define
other image operations as fundamental operations instead of these three operations. The reason for choosing these
three operations is because of their simplicity, simple software design and simple hardware implementation. Figure
4 gives an example of these fundamental operations.

000000 o000000 1111111 00 000 0 111111
0011 1011100 1100001 00 1110 0111111
000110 001 110 0111001 0011110 0111111

000 010 001 1 100 1 1 1 1 01 001 11 10 001 1 1 1

000000 000000 1 11 1 1 1 0000000 00001 1 1
000000 000000 11 11 1 11 0 000000 0000 00

k Reference R Complement y Un~ X u O nilatn X 0 It

Figure 4: An example of fundamenta operations: complement - union U, and diation 6.

Definition 3.7 Elementary Images: There are 5 elementary images:

1. 1 = {(0,0)) - consisting of an image point at the origin



2. A = {(1,0)} - consisting of an image point right of the origin
3. A-' = {(-1,0)) - consisting of an image point left of the origin

4. B = {(0, 1)) - consisting of an image point above the origin
5. B-' = {(0, -1)) consisting of an image point below the origin

In fact, these 5 elementary images could be reduced to 4 elementary images, because I AO A E A- 1 
- B °

B@B-1.

3.2 Two Fundamental Principles

Two fundamental principles basically define the binary image algebra (BIA). Before stating these two principles,
we give some preliminary results. The proofs are omitted here for brevity [19].

I ifX = RLemma 1. (XeR) u(X R)uI= f 0 otherwise V RE P(W).
Remark: I = {(0, O)} is an elementary image,/R = {(-Z, -Y) I (z, y) E R} is a reflected reference image, and

'Y' means "for all".

Theorem 1. Any image transformation T : P(W) - P(W) can be expressed as

T(X) U', {(-'e R.) u(X GR,) uTe Q}

where k < 1, 1 is the cardinality (i.e. the number of elements) of P(W), and RJZ and Qj are the reference images
used to form any desired image transformation.

Remark: U5=1 R, = R U R 2 U ... U Rk.

Theorem 2.Any image can be represented as

X = U(ij)Ex A'Bj

where A'B' = A' E B- A' = A Ae... eA = {(i,0)} (if i = -k, i is a negative integer, then A-k _

A - ' EA-' E...EA -' = {(-k,o)}) and A,B,A-,B-' are the elementary images defined in Definition 3.7.

Principle 1. Fundamental Principle of Image Transformations
Any image transformation T can be implemented by using appropriate reference images R and the three
fundamental operations: 1. Complement X of an image X, 2. Union U of two images, 3. Dilation E
of two images.

Proof. It follows from Theorem 1.

Principle 1 solves almost any problem in binary image processing/analysis, especially in shape inspection, size
verification, and pattern recognition with shift, scaling and rotational invariance [19] [20]. However, in reality, how
can we build a computer that offers arbitrary and programmable reference images for dilations? Do we really need
a large memory to store many kinds of reference images? The answer is "no". The second fundamental principle
suggests an economical way to accomplish this.

Principle 2. Fundamental Principle of Reference Images
Any reference image R can be generated from elementary images (I, A,A;', B; B-') by using the three
fundamental operations.

Proof It follows from Theorem 2.

Therefore, by the above principles, the algebraic structure of BIA can be defined as:

Definitton of Binary Image Algebra (BIA)
Binary image algebra is an algebra with an image space S and a family F of finitary operations

including 5 elementary images, which are 0-ary operations, and 3 fundamental operations, which are
non 0-ary operations. Symbolically,

BIA = (P(W);E,U,-,1,A,A-',B,B-')
i.e. S= P(W) and F = (ij),U,-,I,A,A-',B,B-')



Remark: For any integer k, a k-ary operation on S is defined to be a function f : Sk - S. Thus, a unary (or

1-ary) operation on S is simply a function on S to S. A binary (or 2-ary) operation on S is a function on S2 to

S. For completeness, we define a nullary (or 0-ary) operation on S to be a particular element of S.

4. Implementation: DOCIP-hypercube

To map algorithms into architectures in a transparent way, we use an algebraic approach for describing a

cellular image processor first. Then we design the digital optical cellular image processors (DOCIPs) and their

optical implementation. The DOCIP-hypercube, a two-dimensional cellular hypercube, uses optical parallel global

interconnection capabilities and offers further improvements in speed and flexibility.

4.1 Algebraic Description

Having defined cellular automata and the implementation requirements of BIA, we describe the DOCIP in an

algebraic way:

Definition of Cellular Automata
A cellular automaton is an algebra A = (S; F, N) where S is the state space which is a set of states,

F is a family of transition functions, and Nc is the neighborhood configuration.

Constraints of Implementing BIA:

1. S D P(w)
2. F D (e,U,-
3. Nc D IUAUA-IUBUB

- (or N, DAUA uBu B - ')

where "D" means "contains".

Thus, in terms of cellular automata, the DOCIPs have to satisfy the above constraints for realizing BIA. For

storing input images and temporary results in a more flexible way, the DOCIPs utilize three memory modules and

share the same algebraic structure (except the neighborhood configuration):

DOCIP = (P(W); e, U, -, N')

where N, can be one of the following 4 types:

1. DOCIP-array4: each cell connects with its four nearest neighbors and itself, i.e. Narray4 = I U A U A- 1 U

BUB - '.

2. DOCIP-array8: each cell connects with its eight nearest neighbors and itself, i.e. N,,s = U.d= 0,±I A'Bj"

3. DOCIP-hypercube4: each cell connects with those cells in the 4 directions at distances 1,2,4,8, ... , 2k from

it, i.e. Nhypercube4 = (Ui=o, 1,+2 ..... ,2 A') U (Ui=+1. 2 ....,2k Bi).

4. DOCIP-hypercube8: each cell connects with those cells in the 8 directions at distances 1 , 2 , 4 , 8 ,..., 2 k from

it, i.e. Nhypercubes = U.d=o, ,...,*2k A'B'.

Among of these, DOCIP-hypercube4 is most preferred because its hardware requirement is simpler than

DOCIP-hypercube8 while they have the same order of performance. The DOCIP-array architectures are nearest-

neighbor connected but have poor global communication capabilities.

-- p Da. m PO G l mo

control bits for reference image E,.
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4.2 General Description

From the above algebraic description, the DOCIPs have the same algebraic structure and differ only in their
neighborhood configurations N,. Thus, they share the same architecture as shown in Fig. 5, but have different
configurations of the refertnce images E depending on the optical interconnection network which defines the
neighborhood. In practical applications, a larger reference image R can be generated from a set of smaller reference
image(s) E by a "sequential dilation". If it is possible to decompose R into a sequence R = El e E2 e ... ( E&,
then

X E) R =(.((X ED Ej) (D E2) E) ... 19 Ek).

Figure 6 gives an example: a dilation with a polygon (filled) reference image R is implemented by a sequential
dilation with four line reference images E,; it requires O(L) time for the DOCIP-array and 0(0og2 L) time for the
DOCIP-hypercube where L is the maximun length of the four line reference images. This decomposition may not
always exist, in which case R can always be decomposed as R = R, U R2 U ... U Rk, and then

X eR= (XeDR )u(XeR 2)U...u(XeRk)

where each Rj can be composed from the smaller reference images E,.

X

X El E2 E3 E4

Figure 6: An example of decomposing a dilation with a larger reference image R into a sequential dilation with some
smaller reference image E,. It requires O(N) and O(lo9N) time for DOCIP-srray and DOCIP-hypercube respectively.

The proposed DOCIP as shown in Fig. 5 is a cellular SIMD machine and consists of an array of cells or
processing elements (PEs) under the supervision of a control unit. The control unit includes a clo.ck, a program
counter, a test and branch module for feedback control, and an instruction decoder for storing instructions and
decoding them to supervise cells. The array of cells includes a I x 3 x N 2 bit destination selector, three N x N x 1
bit memories for storing images, a memory selector, and a dilation unit.

The DOCIP shown in Fig. 5 operates as follows: (1) a binary image (N x N matrix) is selected by the
destination selector and then stored in any memory as the instruction specifies; (2) after storing the images (1 to
3 N x N matrices), these images and their complemented versions are piped into the next stage, which forms the
union of any combination of images; (3) the result is sent to a dilation where the reference image specified by the
instruction is used to control the type of dilation; (4) finally, the dilated imigcan be output, tested for program
control, or fed back to step (1) by the address field of the instruction.

4.3 Optical Implementation

The entire system can be realized by an optical gate array with optical 3-D interconnections (10)[20]. Figure
7 shows an optical concept for the DOCIP-hypercube implementation. It embeds an array of cells in an array of
optical binary gates and performs interconnections of these gates by an optical hologram. It should be noted that
current optical technology has implemented only arrays of moderately large numbers of gates (500 x 500) at very
slow (--ms) switching speeds, and alternatively, arrays of small numbers of gates (2 x 2 to 6 x 6) at fast switching
speeds (0.1ps - 50ps) [21][22). Current ongoing research in a number of laboratories looks promising in eventually
providing the needed arrays of large numbers of gates with reasonably fast switching speeds. Alternatively, control



of the DOCIP can be easily realized by using an electronic host instead of the optical control unit, since control
of SIMD systems is primarily a serial process. The tradeoff is a possible inefficiency in the interfaces between
electronic and optical units. Because of this, the all-optical approach may be preferable in the long term. To
efficiently utilize optical gates, they can be interconnected with a 2-D optical multiplexing technique in which a
common controllable mask is used for all cells. The optical multiplexing technique has following advantages: 1)
the DOCIP will no longer require the broadcasting of instructions from the control unit - instead all cells fan
their outputs into a common controlling mask pixel; 2) it will reduce the number of gates; and 3) each cell has
a simple structure - essentially containing only a 3-bit memory with inverting and non-inverting outputs, and a
multiple-input OR gate for dilation.

-Cofetsons in th MClP-hyporubs4 Optca Feedback Path
=JConnecttona in th DOCIP-hypcub

Interconnection Unit
Imaging (implemented by

N

N I N Output Sife of Array of Cells N x N Inpt Sid. of Aray of Cells
(impemented by optical gate array) (mpiernonted by optical gate array)

Fif ire 7: An optical cellular hypercube (DOCIP-hypercube4 or DOCIP-hypercube8). Imaging optics are omitted for
clarity Each cell connects with celis in the 4 directions or 8 directions at distances 1,2,4,8.2k from it by optical 3-D
free interconnection. The input and output sides of the optical gate array are interconnected by an optical feedback path
and are shown separately for clarity.

To avoid the well-known drawbacks of conventional computers based on von Neumann principles [12 [13], the
machine in Fig. 5 has one instruction which implements the three fundamental operations of BIA along with
fetch and store. This design uses the parallelism of optics to simultaneously execute instructions involving all N2

picture elements.
This single instruction has the following format:

(6. , 82, .. ... . ...... ....nk, d, d2,d3,jJ2aa2 2...... ,.... b)

where k is determined by the chosen neighborhood configuration N,, the DOCIP-array requires k = 5 or k = 9
bits for controlling the reference image R at a clock cycle, the DOCIP-hypercube requires k = O(1og 2N) for N 2

cells, and I defines the maximum length of a program: 21. The functions of these 11 + k + 21 instruction codes are:

* $1, 62, s 6 select the output from the memory elements;

Snl, 12, ... , ,. k control the neighborhood mask, i.e. to specify the reference image;

* dl, d2, and d 3 select the destination memory for storing the image;

a j, and j2 flag an absolute jump or conditional jump;

a a,, a__. a are the address for a jump; and

• b, ... , bl are the address of the instruction.

In contrast with the DOCIP-array, the DOCIP-hypercube increases the interconnection complexity to 0(1092N),
but is able to perform many global operations in 0(og2N) time. Compared with conventional-array processors
having serial or N-parallel input/output, the DOCIP-array will have the same order of performance in local and
global operations but will be improved in input/output performance, and in principle could be as low as 0(1) in
I/O operations. The DOCIP-hypercube will not only be improved in input/output performance but also in global
operations. With external memory, it can be demonstrated to be general purpose in the sense that it simulates
any Turing machine. One important feature in the design of the DOCHI-array and DOCIP-hypercube is that
optical 3-1) free interconnection capabilities can be used to reduce the cell hardware requirements as well as solve
the global connection and I/O problems which are difficult to solve by planar VLSI technology.



5. Conclusions

A two-dimensional cellular hypercube architecture has been proposed to have the best features of both two-
dimensional hypercube and cellular logic architectures for image processing. BIA suggests an unified theory of
parallel binary image processing for developing parallel algorithms/languages and can be generalized to grey-level
images. The DOCIP-hypercube utilizes the parallel communication and global interconnection capabilities of
optics for avoiding communication bottlenecks and matching BIA parallel algorithms with the two-dimensional
cellular hypercube architecture. The current design of DOCIP-hypercube has an extremely simple cell organization
with only a 3-bit flip-flop memory and a multiple-input OR gate for emphasizing the binary image processing and
reducing the hardware cost. BIA and DOCIP-hypercube can have many applications in character recognition,
industrial inspection, medical and scientific research, especially morphological image processing. The future work
is its optical experimental demonstration and its analysis of different cell structures with larger grain sizes for
developing fast sophisticated vision algorithms.
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2.4 Nonlinear Optical Processing with Halftones: Degradation and Compen-

sation Models

This paper is concerned with the halftone process used in coherent optical spatial filtering systems

to provide general nonmontonic nonlinear functions.
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Nonlinear optical processing with halftones: accurate
predictions for degradation and compensation

Ahmad Armand, Alexander A. Sawchuk, and Timothy C. Strand

A general analysis of the halftone process for nonlinear transformations in optical signal processing is

presented. The analysis considers the effects of the nonideal characteristics of the recording medium. The
results predict output errors due to different parts of the recording medium characteristic curve for any
nonlinear transformation. A synthesis method for a discrete halftone screen density profile is also described.
This produces an optimum halftone screen density profile for any form of recording medium characteristic

curve and any type of nonlinearity in the sense that it minimizes the mean-square difference between desired
and degraded outputs. The results of a computer simulation for logarithmic and level slice functions are
given.

I. h*tocctlon The above process has been formulated with the
In halftone nonlinear optical signal processing the assumption that a binary recording medium is used in

continuous tone input picture is transformed into a the halftoning step.2 With this assumption, once the
binary picture by contact printing the continuous in- output intensity is expressed as a function of input.
put data through a halftone screen onto a high-con- intensity and halftone screen density profile (analy-.
trast recording medium. The product of the input and sis), we can easily invert the problem and get the half-
halftone screen transn-ittances is clipped in the pro- tone screen density profile given the relationship be-
cess, giving an array of binary dots whose size is a tween the output and input intensities (synthesis).
function of clip level, the input transmittance, and the Unfortunately, almost all recording media deviate
halftone transmittance profile. The periodic nature from the binary assumption. This deviation, which is
of the halftone screen causes each subregion of the quite small for high-contrast photographic films, is
binary image corresponding to a constant input inten- quite noticeable for any real-time spatial light modula-
sity to become locally periodic. When placed in the tors presently available. 3 4 Consequently, to utilize
usual coherent optical filtering system, multiple dif- accurately the halftone technique, we remove the as-
fraction orders appear in the Fourier transform plane sumption of a binary recording medium from the
because of the sampled input. The procedure for pro- mathematical formulation of these processes. Da-
ducing nonlinearities involves use of one diffraction shien and Sawchuk modified the results on halftone
order combined with specially made halftone screens. processing for an ideal recording medium by including
A filter is placed in the Fourier plane that transmits the effects of finite slope and saturation density.6

the light around one diffraction order and blocks ev- They developed a numerical procedure, valid for
erything else. This in effect demodulates the image.' monotonic halftone cells, to compensate in advance for
After the filtered diffraction order in the Fourier plane some recording medium effects (precompensation). A
is inverse transformed, the continuous nonlinearity closed form solution to this problem has been obtained
transformed output appears. by Batten and Everett6 for some limited nonlinear

transformations. The formulation of Dashiell and
Sawchuk does not predict the effects of general nonlin-
ear characteristics of the recording medium on the
overall nonlinear transformation. Moreover, their

When this work was done all the authors were with University of formulation is restricted to mton. ic halftone cell
Southern California, Signal & Image Processing Institute, Los Ange- shapes.
les, California 90089. A. Armand is now with Wilkes College, In this paper we present a formulation of the half-
Wilkes-Barre, Pennsylvania 18700. and T. C. Strand is now with

IBM Almaden Research Center San Jose, California 95120. tone process which considers a recording medium with
Received 26 March 1986. a characteristic curve of general shape and which pre-
0003-6935/87/06l007.08502.0/0. dicta the final degradation of the output for any half-
(Q 1987 Optical Society of America. tone screen cell shape. This formulation is examined
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for the case of a binary recording medium, and its t"
result is compared to previous derivations. To obtain
a general solution to the precompensation problem, an

approximate method which considers a discrete half-
tone screen density profile is described. This gives the
halftone screen density profile for any form of record-
ing medium characteristic curve and any type of non-
linearity by minimizing in the mean-square sense the
difference between desired and degraded outputs.
The results of computer simulation for logarithmic 0 X
and level slice functions are shown.

Fig. 1. Amplitude transmittance of a halftoned transparency made
UI. Degradationl with A general nonbinary recording medium.

When a general recording medium is used in the
halftone process, the amplitude transmittance of the
halftoned picture consists of pulses such as shown in

Fig. I that are not binary. The amplitude, width, and
shape of these pulses depend on the input picture b - - - _ __ Iog E)

density levels, halftone screen density profile, and g (log E)
shape of the characteristic curve of the recording medi-
um. Each group of these pulses corresponds to a con-
stant intensity subregion in the input picture. The
period L (Fig. 1) of the halftone screen is chosen to be
small compared with the period of the highest spatial
frequency component in the input picture. Thus any
local region of the amplitude transmittance of the half-
toned transparency th(x) is approximately a periodic log 1 r log E

sequence of pulses which can be expanded in a complex Fig. 2. Characteristic curve of a binary recording medium.
Fourier series,

l

tjx) - B, eIP (1)rk th(x) - gllog(Ij. X IO-fll>jI = gflogI. - f#X)l. (4)

where Replacing this in Eq. (3), we have

= - L ,L th(x) exp ) dx. (2) 1o(Ii.,k) -. ' g[logl - (x)] exp(_ )dx, (5)

In the sum of Eq. (1) each term (denoted by k) which relates the intensity at any point of the output

represents a grating diffraction order. When we pro- picture to the intensity of the corresponding point in

duce the Fourier transform of the halftoned picture in the input picture through a nonlinear integral relation-

the coherent optical processor, these orders appear in ship. When the specific forms of g(logE) and f(x) are

the Fourier plane as isolated spectral islands. The substituted in this relationship and the integral is

spatial filter in this plane selects a single order. Hence solved, the overall relation between the output intensi-

the resulting intensity distribution 10 at the processor ty and the input intensity is nonlinear. *This nonlin-

output is earity depends on g(logE), (x), and the value of the
order selected.

Io(I 0 ,) - lB5]2

Il th(X) je x 2 A. Bnawy Recooaing Medium

L t1() ap ) dx , (3) The characteristic curve of a binary recording medi-
I I um having a threshold at log, is shown in Fig. 2.

which relates the intensity at any point of the output Ideally, a = 0 and b = 1. Note that this form of
picture to the amplitude transmittance of the half- characteristic curve is applicable to a positive trans-
toned picture and the selected order k. Now th(x) can parency. We could also consider the more familiar
be related to the input intensity I, as follows. Let the negative transparency, although the basic results re-
local input picture intensity that produced the above main the same. We will choose the positive transpar-
train of pulses on the halftoned picture be denoted by ency curve because it is more similar to the characteris-
li.. If the density variation of one period of the half- tic curves for real-time devices. We now simplify the
tone screen is represented by f(x), the intensity trans- general relationship of Eq. (5) using the characteristic
mitted by the halftone screen is 1j x 10-().1 lfwelet curve of Fig. 2.
the amplitude transmittance vs log exposure (logE)
curve of the recording medium be described by B. Zero Order
g(logE), we can write For the zero-order case k - 0, and Eq. (5) becomes

APPLIED OPTICS / Vol. 26, No. 6 / 15 March 1987



10,(,.0) = glogl, - I(x)]dx (6)f

Given g(logE) as the binary function shown in Fig. 2 continuous (0) ,

and assuming f(x) to be a monotonically increasing
function, we have

iflogli, -1(x) < log!, or x >f- (1)log) theng(logE) - a.
03-- discrete f1(JIAlso, O2C12

if logl - f(x) log[, or X t' log ,theng(logE) b. 0 L L_2 L 3  LN:L

Fig. 3. Step approximation to halftone screen density profile.Substituting these relations into Eq. (6), we have

1(1) r (b -a) 1, )]2A1
o(,O) =a + L f - I log (7) Another type of halftone screen density profile that

can be generated in practice is a step function approxi-
where f-() is the inverse function of f(-). This result mation to the desired continuous density. These half-
is the same as that obtained previously for the case a = tone screens are generated by digital image recorders,
0, b = 1 (Ref. 2) except for the fact that it is obtained in plotting microdensitometers, or step-and-repeat cam-
a more straightforward manner and can easily be gen- eras. Hence the theoretical accuracy available in de-
eralized. signing the halftone screen density profile is limited by

C. Nonzero Order the practical limitations in making the screen. This
motivates the following analysis which considers the

For k 6 0, the above simplifications for the charac- halftone screen density profile as a step function ap-
teristic curve can be used in Eq. (5) to obtain proximation of the ideal profile. As will be shown in

I[ _this section, this assumption helps to simplify the for-
o(li,k) :,Le.Pj2 b kp dx mulas and allows us to obtain some conclusions whichcannot be drawn from the continuous density analysis.

L I j2rkx d 2 To do so, we utilize a discrete density halftone screen
+ J" . a xp-F dL x (d) and derive optimization formulas for the zero and non-

t Jj zero orders.

If we let A. Zero Order

ssiun [J i .1 )h Equation (6) is the general formula relating the out-
put intensity in the zero order to the input intensity.

then Let f(x) be approximated as shown in Fig. 3, then Eq.(6) can be written as

0()1 I Lo s [ " g(IogI - a1 )dx

After substituting the expression for x, we have + JL2g9 0 9 1 m - a2)dx

+ ... + f g(og.- (1.dx • (12)

This also agrees with the previously obtained results. 2 . JM-1

This new analysis provides not only a straightforward Assuming that the x-axis intervals are all equal, i.e.,
derivation of the above results, it also leads directly to L
the new precompensation techniques described in the L, - 0 = L2 - L, ... L - LN_ ! = (13)
next section.

Eq. (12) reduces to
W. Piew.Venetiofl N 2

Several methods are available in practice for gener- Io(Ii.,O) N g(log/i. - a,) (14)
ating halftone screens with a desired density profile. I
Some methods are purely optical and involve the pho- The above formula gives the output intensity in the
tographic recording of geometrical shadows or diffrac- zero order as a function of the discrete grey levels on
tion patterns from ruled gratings. Although this tech- the halftone screen and the characteristic curve of the
nique produces continuous halftone screens, it does recording medium.
not have the flexibility to produce precisely arbitrary To design the proper halftone screen, we want
screens needed for nonlinear processing. a,1. . ..... .,N in Eq. (14) where g(.) and the desired
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functional relationship of I0(I,.,0) in terms of Iin are _E = 01 (22)
given. Although Eq. (14) is an approximate represen- o(,
tation of Iin, we can require it to be exact for a discrete or
set of values of In = 1,a, where 1 ... ,m. .... M. Thus in
discrete form Eq. (14) can be written as (a, 0. 0 (23)

N 2 By,N 10,2... .. v.(3

o(Il.O) - g(iogi - a,) . Hence to have Eq. (22) true when Eq. (20) is true, we
should avoid satisfying Eq. (23). To check for this
condition note that

Io(,,0) glog(15 -= (d -c) sin2y,, (24)
I "'I ay

Ni&. 2 which when set to zero gives
i (Im . ) = E g (og l - ) •

I I I y,=0-a,=c .. (25)

One procedure to find the optimum ai terms is to or
minimize the mean square error expression Y2  - ai = d I. ,N. (26)

minE = 1°(1.0) - Eg(Iogl,) (16) It can be seen that the only values of ai in the range
"' [c,d] that make Oa,/Oyi = 0 are the boundaries of this

This should produce values of ai that bring the output interval. This can be prevented from causing a prob-
intensity in the zero order as close as possible to the lem by choosing c and d so that the interval [c,d]
desired output intensity in the mean square sense. contains the limit values for the ai terms.

Now, because the ai terms are the different density As an example of a function possible with the zero
values on the halftone screen, we constrain their values order consider the design of a logarithmic screen. In a
to lie within certain limits, as expressed by logarithmic process we want the relationship

c -5 a, < d, (17) 1O(I,0) = p. log(l,,/l) (27)

where c and d are given non-negative constants. This between the output and input intensities where p is a
makes the optimization problem one of constrained constant and 1, is shown in Fig. 2. Hence, to find the-
minimization. We want a transformation from optimum screen giving the above logarithmic relation-
[-D,w] to [c,d]. The functions sin2 and cos 2 are exam- ship with a recording medium characteristic curve
ples of functions that transforn [-a=] to [0,1]. We g(logE), we must perform the minimization
arbitrarily choose the sin 2 function. If we let 7

a, - (d - c) sin2 y, + c, (18) minE f p. )og(l./l,)
Y"Y2. - "J'N

this limits the values of the a, to the range tc,d]. With
this change of variable, Eq. (16) now becomes N

min I g - 1  g ogI., - (d - c) sin2y, - clJ (28)minE = v 11o(1..0) "

" , -, 2.For the initial values of the above minimization we will

SN 1212, use the halftone screen density profile values obtained
- J gIogl - (d - c) siny, - cl (19) for a binary recording medium. This helps the mini-

,- cImization converge more rapidly, particularly when the
recording medium response is close to binary. In prac-

which gives the values of y terms. The corresponding tice, we do not expect to perform halftone nonlinear
ai terms can then be found from Eq. (18). processing with a very low gamma recording medium.

In going from Eq. (16) to Eq. (19) we should make To obtain the halftone screen density profile for the
sure that the minimum of E with respect to the ai terms logarithmic process with a binary recording medium as
is in fact the same as the minimum of E with respect to shown in Fig. 2, we equat Eqs. (7) and (27) to get
the y, terms. To check this, note that when we mini-
mize E with respect to yj, we set p (-, = [ + - (29)

dE 0, L ... 1 .. ,.(O

and substitute u - log(i/Il) in the above equation to
which is equivalent to obtain

d- _& ' =Bo, . ,i . N , (21) p ." a + ( - a -)r (u )1 2 (30 )
da, y, I L

from which we have Because log is a monotonic function, the corresponding
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i density values of Eq. (32) and binary recording medi-
um characteristic curve of Fig. 2 in Eq. (5). The de-

b graded graph is obtained by using the density values of
Eq. (32) and the recording medium of Fig. 4 in Eq. (5).
The optimized graph is generated by using the density
values obtained from Eq. (28) and the characteristic
cure of the recording medium for which those density
values were produced in Eq. (5).

In Figs. 6 and 8, the ideal graph represents the densi-
a ty profile of a halftone screen for a logarithmic process

log I log E using a binary recording medium. The optimized
Fig.4. Characteristic curve ofa piecewise linear recording medium. graph is the density values obtained from Eq. (28) for a

recording medium with the characteristics shown in
Fig. 4. It is seen in Fig. 5 that for gamma of 3.0, there is
a significant amount of degradation, and the optimized

halftone screen density profile will also be a monotonic screen has been successful in removing this degrada-
function. Hence f is a monotonic function so we can tion. For a gamma of 10, shown in Fig. 10, as one might
write flf-l(u)] = u. Using this in Eq. (30) we have expect, there is less degradation, and the optimized

screen is even more successful in producing the idealP. - (uW I= [a,+ (bL-a (u, .- (31) result.

Now let x = f-I(u) in the above equation to obtain B. Nonzero Order
1r = b- 0 axL( The general formula relating the output intensity inf(x) = Pa + x , 0- x -L. (32) the nonzero orders to the input intensity is

Hence the initial values for the ai terms are 0(lI",k) = gilogi,. -f(x) cap (,2,kx)dx 2  (35)
a,=I[. (b -a)xT O5x<5L, 1 l....i,..,N. (33)

a = [a + ( - L,... . from Eq. (5). Using a quantized approximation to

F(x), as in the zero-order case, we can write (from Fig. 3)

From Eq. (18) the corresponding Y terms are 2k dx
y i8 1[(p- + c)[a+(j-)xi - c)12] . (34) L a

The above ya terms will now initialize the minimization + f(j 2 wkxYi ow+ f g(logli. - G2) exp dx +..

procedure of Eq. (28) to obtain the corresponding yj \L,
terms for a nonbinary recording medium.

A computer algorithm was written which performs + 0g(Iog. - ON) exp dx •

the above minimization. It uses the ZXMIN subroutine i-,

which is taken from the IMSL library.8 This subrou- (36)
tine is based on a quasi-Newton algorithm for finding
the minimum of a function of N variables. 9 In the For simplicity we let
quasi-Newton method we do not directly solve for the g(logli, - a) = g,, 1. .. . (37)
minimum of E by solving Eq. (20) directly. Rather we
use an iterative procedure which starts from the initial Then

point and uses Eq. (20) to get as close as possible to the g,__ f j2rk(L, - 0)] }+ +Nminimum. Thus we do not expect to produce the 4°lnh = 4r2 k 2  g -
e  

L Z j +..+

undesired solution of Eq. (23) as the minimum.
The results for recording media of the type shown in X eip [jTAL N1 2rk(L - LN-) ]  12

Fig. 4 with a = 0, b = 1, and different slopes in the ( L L ]
linear part are shown in Figs. 5-8. The slopes are (38)
called gamma in the figure but should not be confused
with the usual photographic gamma. It is assumed Now from Eq. (13)
that there are thirty discrete points in the halftone L,- 0 = L2 -L, LN -LN-1 

= LIN, (39)
screen density profile, and the density values are be-
tween 0 and 2 in these figures. It is also assumed that so when Eq. (39) is used in Eq. (38) we have
the values of log/, (shown in Fig. 2) lie between the 1 ! e(2kLt+
middle of the values of logl and logI2 (shown in Fig. 4). i°(9Ik 2 + 2 + gN

Note that the plots of the input-output curves are

semilogarithmic, and hence the result is a straight line. (j2wkLN,- )12 (j2k 2
In Figs. 5 and 7 the graphs labeled ideal represent the X eip- L Jep 1 - (40)

desired relationship between input and output intensi-
ties. This can be obtained with the halftone screen Note also that
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1 (1N. (41) minE 0(1,k)--- -- exp 1
a1.) , N 4r

2
k

2  N

Consequently Eq. (40) can be written as fN1ki-1 ]212

10(i. 1k) ex ji ( _ _ 122rk) - i • g(og l. - a) exp [ 1)1 (43)

N 1To limit the resulting density values as in Eq. (17) we
g(og. - a,) expL j • (42) transform the problem to the minimization

minE - o10(l,,k)- 1 eip - 1

Equation (42) gives the output intensity in any non- Y,... J2/
zero order k in terms of the input intensity, the charac-
teristic function of the recording medium, and the IV
discrete grey levels on the halftone screen. To design • glog., - (d - ) sin 2y, - cl
tht proper halftone screen, as in the case of the zero
order, we should determine suitable ai values from Eq. rj2k( -_1)]1212
(42). The procedure that we take is the same as the X eip[ - (44)
one for the zero order. Namely, we minimize the ex- N

pression The y, terms are related to the ai terms through Eq.
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i
(18). To initialize the values of the yj terms for this I
minimization procedure, we use the density values
obtained for the screen when the recording medium is

t binary.As an example of a function possible in the nonzero I - -

order we consider the design of a level slice screen. To -- [--

obtain a level slice transformation the first order is a
suitable choice. For this function we want

,for Ii. < I.,

o o(/n,l) - for 1.-in <lb ,  (45) Fig. 9. Level slice function.

0, for Ii >- Ib.

This function is shown in Fig. 9. The density profile f (x)
given a relationship for the binary recording medium
shown in Fig. 2 for a = 0 and b = I is 1oq(lb/ -- -

Iog(lo/l,), for 0 <5 x < L_

/(x) = 2 (46) 1

logU6/,14, for - < x -5 L,
2l

which is shown in Fig. 10. The corresponding density
levels in the discrete screen are

Ilog(10/), fori < N L/2 L2t2 Ni(47) Fig. 10. Halftone screen density for the level slice function of Fig. 9.
tlog(bl,), for i >- N

2

Using Eq. (47) in Eq. (18), we have 1
Ot

T I 11 1 1 -

fori<-N  ,'2  
(8) i ,l i , , i [, '

taY ' | L dfor i <
L L d-c 2 ' i I b

sin~ ~~~ Ijlgb1)c'2 or2N11

With the initial values for yi terms as above we then
want to minimize

minE - 1 (i...l) - 1_ exp 2r) _ 1]2

g~logl, -(d- c)sin2 y, -c

0 1 10 00

X 1x 2" - •2 (49)

I N Fig. 11. Level slice transfer function for a piecewise linear record-

A computer routine similar to the one for the loga- ing medium with gamma = 3.0: (a) ideal; (b) degraded; (c) opti-

rithmic process has been written to perform the above mized.

minimization. With the same assumptions about the
recording medium and the halftone screen as with the
logarithmic process, the result is shown in Figs. 11-14. slope of the leading and trailing edges of the level slice
Figure 11 shows the ideal level slice function and the is still limited by the gamma of the recording medium.
results that would be obtained for a recording material Figure 12 shows the halftone profile for an ideal re-
with an effective gamma of 3.0. Also shown is the cording material and the precompensated halftone
optimized level slice obtained by precompensating the profile for a recording material with a gamma of 3.
halftone screen profile. It is seen that although the Figures 13 and 14 are the corresponding results assum-
mean square error between the ideal and the actual ing a recording material with a gamma of 10, which is
response curves can be significantly reduced, the finite much closer to the ideal.
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f(X) IV. Conckwslos
2 i-T-r r 7- T -Tr-r A new formulation of the halftone nonlinear pro-

cessing technique has been presented. The formula-
tion is general and works for any recording medium
characteristic curve shape and any halftone screen cell
shape. Thus one can easily predict the amount of

F- (b) degradation of the output due to a nonbinary charac-
teristic curve of the recording medium. This is partic-

(a) ularly useful for real-time realization of the halftone

processing. In this case, a real-time image transducer
is used as the recording medium. Because the pres-
ently developed devices do not possess the desired
sharp threshold characteristic, halftone screen pre-

- compensation is necessary.
0 L_ i iThe problem of the design of the halftone screen

Fig. 12. Halftone cell shape corresponding to Fig. 12: (a) ideal; (b) density profile with a nonideal recording medium has
optimized. been solved by an approximate method which obtains

IouT the halftone screen density profile by minimizing the
difference in a mean square sense between desired and
degraded outputs. Results of computer simulations

( c) for logarithmic and level-slice transformations have
(b) been given. The results show that for smooth nonlin-

earities like the logarithmic function, it is possible to
compensate for the nonideal characteristic of the re-
cording medium. For nonlinearities with sharp jumps
like the level-slice function, the compensation is less
successful.

I,
'Fig. 13. Level slice transfer function for a piecewise linear record-

ing medium with gamma = 10.0: (a) ideal; (b) degraded; (c) opti- Reirences,
mized. 1. J. W. Goodman, "Operations Achievable with Coherent Optical

fx) Information Processing Systems," Proc. IEEE 6S, 29 (1977).
2 2. S. R. Dashiell and A. A. Sawchuk, "Nonlinear Optical Processing:

Analysis and Synthesis," Appl. Opt. 16,1009 (1977).
3. S. Iwasa and J. Feinleib, "The PROM Device in Optical Process-

ing Systems," Opt. Eng. 13, 235 (1974).
4. J. Grinberg et at., "A New Real-Time Non-Coherent to Coherent

Light Image Converter," Opt. Eng. 14, 217 (1975).
(b) 5. S. . Dashiell and A. A. Sawchuk, "Nonlinear Optical Processing-

(a) Effects of Input Medium and Precompensation," Appl. Opt. 16,
2279 (1977).

6. G. W. Batten, Jr., and R. L. Everett, "Control of Film Character-
istics by Modulating Intensity and Space," J. Opt. Soc. Am. 68,
1118(1978).

7. R. W. Hamming, Numerical Methods for Scientists and Engi-
neers (McGraw-Hill, New York, 1973), p. 673.

IIJ iIII IIIIIt I i I I 8. This subroutine was taken from the IMSL library 2 which is
0 L available from IMSL, 7500 Bellaire Blvd., Houston, TX 77036.

Fig. 14. Halftone cell shape corresponding to Fig. 13: (a) ideal; (b) 9. R. Fletcher, "Fortran Subroutines for Minimization by Quasi-
optimized. Newton Methods," Report R7125 AERE, Harwell, England.
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2.5 Optical Symbolic Substitution and Pattern Recognition

The attached paper "Optical Symbolic Substitution and Pattern Recognition Algorithms Based

on Binary Image Algebra" by K.S. Huang, B.K. Jenkins and A.A. Sawchuk from ICO Topical

Meeting on Optical Computing, Toulon, France, August 29 - September 2, 1988 describes the

application of binary image algebra to pattern recognition systems for cellular processors.
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Optical Symbolic Substitution and Pattern Recognition Algorithms
Based on Binary Image Algebra

K. S. Huang, B. K. Jenkins, A. A. Sawchuk

Signal and Image Processing Institute
Department of Electrical Engineering

University of Southern California
Los Angeles, CA 90089-0272. USA

February 27, 1988

Abstract

Pattern recognition algorithms and algebraic properties of binary image algebra (BIA) are used to improve the speed, flexibility
and complexity of symbolic substitution.

Submitted to ICO Topical Meeting On Optical Computing, Toulon, France, August 29 - September 2, 1988.



Optical Symbolic Substitution and Pattern Recognition Algorithms
Based on Binary Image Algebra

K. S. Huang, B. K. Jenkins, -A. A. Sawchuk

Signal and Image Processing Institute, Department of Electrical Engineering,
University of Southern California, Los Angeles, CA 90089-0272, USA

Summary

Binary image algebra (BLA), a unified systematic complete theory of parallel binary image processing .[-I], also provides a
unified spatial logic of digital optical computing for describing symbolic substitution, cellular logic and Boolean logic in parallel [2].
Symbolic substitution has been used to implement logic, arithmetic, communication and simulating a Turing machine [3]; but its
implementation of some operations (e.g. parallel binary arithmetic) is relatively complicated to other BIA implementations [.2]. In
this paper we further suggest some BIA algebraic techniques and pattern recognition algorithms, including a shift, scale and rotation
invariant algorithm, to improve the speed, flexibility and complexity of symbolic substitution.

A symbolic substitution rule involves two steps: 1) recognizing the locations of a certain spatial search-pattern within the 2-D
input data, and 2) substituting a new replacement-pattern wherever the search-pattern is recognized. As illustrated in Fig. 1, BIA
can be used to realize a symbolic substitution rule defined by:

(X R)EDQ = ((X eR 1 )n (YeR2)) e Q = (tDe- 1) u (X e A 2)eq 

where X is the 2-D input data, R = (RI, R2) is the reference image pair corresponding to the search-pattern (Ri and R2 define the
foreground and the background of the search-pattern respectively), i defines a reflected reference image given by RZ = {(-z, -y) I
(z,y) E R), Q is the reference image corresponding to the replacement-pattern, " 0" denotes the hit or miss transform which is
the pattern recognizer, "e" denotes the erosion operation, and 'V denotes the dilation operation which is the pattern replacement
operator. To work with more than one rule (say p substitution rules) for practical applications, a symbolic substitution system (Fig.
2) produces several copies of the input X, provides p different recognizer-substituter units, and then combines the outputs of various
units to form a new output. Thus, a symbolic substitution system is implemented by

U(X (j R(') ) (D Q(s (2)

where RO') and Q), i = 1,2,....p, are the reference image pairs and replacement patterns in the &tA symbolic substitution rule.
This, then, is the BIA formula for general symbolic substitution.

However, in many cases the above form is inefficient and can be reduced to a relatively simpler form or implemented in a more
efficient way by using some BIA algebraic techniques. Here are some examples: 1) the full recognition can be implemented by only
the background or foreground recognition under certain conditions; 2) if Q(') - 0, the &e

" symbolic substitution rule in Eq. (2) is
not needed (e.g. the four rules of binary subtraction in simple intensity coding of arithmetic data can be reduced to only two rules
[2]); and 3) if Q() = Q for all 1 < i < p (this happens in those cases that a class of search-patterns is defined by a set of reference
image pairs R(') , i = 1,2, ...,p), we should combine the results of the hit or miss transforms first and then replace them by the same
replacement-pattern Q instead of implementing p substitution units for realizing the same substitution step, i.e.

(U6 X (R(') Q. (3)
..- I

The practical difficulty with the implementation in Eqs. (2) and (3) is that the hit or miss transform is only efficient for the
shift invariant recognition and would require a large number of intricate reference image pairs to perform the recognition step in the
presence of changes in scale, rotation or both. Thus, it might be too costly to implement scale and rotation invariant recognition of
intricate patterns for symbolic substitution based on the above formula. For example, if we want to substitute all "square patterns'
in an input image by the same character "S", it would be very inefficient to use the above symbolic substitution implementation
techniques.

To solve this kind of scale and rotation invariant problem, here we recognize all the desired patterns by reversing the growing
procedure of a family of patterns. This family defines all patterns in the presence of changes in scale, rotation or both, and transforms
all the desired patterns into their original seeds, which are isolated single image points. We have developed a description of this
procedure in terms of BIA. For brevity, here we describe only the case of shift and scale invariant recognition. Suppose we want to
recognize all square patterns with different scales and locations in the input image X (e.g. Fig. 3(a)) and to produce the output
image Y (e.g. Fig. 3(b)). The procedure is: 1) determine a growing sequence of the desired patterns T. (e.g. Fig. 3(c)), where
0 < i < m and the largest size of the desired patterns is m x m; 2) find a small set of good reference image pairs { R(8)) (e.g. Fig. 3(d)
has only 5 small reference image pairs for recognizing all square objects with different scales) satisfying some criteria, where each
reference image pair in {R(9)) corresponds to a possible neighborhood of a given foreground image point in a pattern T., I <, < m.
whose previous state in the pattern T-I is a background point; 3) transform the desired patterns T.., i = 1, 2...., m, in the 2-D input
image X X(t 0 ) into their original seeds (i.e. To which contains one and only one foreground image point) by the recursive relation
X(t&.1) = X(th)/ U,e, X(th) ® R(O), where 0 < k < m; and 4) pick up the original seeds by Y = X(t,,) ®Q, where Q (Fig. 3(e))



is a reference image pair with one and only one foreground image point at the center and Y is the final recognition output. By
selecting good reference image pairs associated the growing sequences of rotation patterns, we can extend shift and scale invariance
to include rotation invariance in a similar way. This algorithm can efficiently reduce the computation complexity for a certain class
of pattern recognition and symbolic substitution problems; their computation times depend only on the diameter of the largest
desired pattern, but not on the number of patterns nor the size of the whole image.

A digital optical cellular image processor (DOCIP) (1] (2] implements all the above algorithms of symbolic substitution and
pattern recognition in a flexible and efficient way compared to a symbolic substitution processor (Fig. 2) with p fixed recognizer-
substituter units. The DOCIP programming for these algorithms will be illustrated.

References

(1] K. S. Huang, B. K. Jenkins, A. A. Sawchuk. "Binary Image Algebra and Optical Cellular Logic Processor Design.' submitted
to Computer Vision, Graphics, and Image Processing.

[2] K. S. Huang, B. K. Jenkins. A. A. Sawchuk, "An Image Algebra Representation of Parallel Optical Binary Arithmetic",
submitted to Applied Optics.

[3] K-H. Brenner, A. Huang, and N. Streibl, "Digital Optical Computing with Symbolic Substitution," Applied Optics. Vol. 25.
pp. 3054-3060, 1986.

Acknowledgements

This research was supported by the Air Force Office of Scientific Research under grant AFOSR-84-0181, by the Office of Naval
Research under contract N00014-86-K-0602. and by an IBM graduate fellowship.

Seerc. oattern F5_1 F RT, vis06cner00-0o

'I I It,. R ) F--- M, Q ,.,

R, a 0 ..44!". Forgrun rsecogridmonJO

input I Ful aon SuAstnl ipu imaeut

/ e R, 0r a =

0 a 0 0

S X , R~ - X I1 asI

Figure 1. BIA representation of symbolic substitution. The
optional mask M is for controlling the block search region.

(b) The output image Y.

T0 T7. / T T

___ W.5fauoiI tuio (c) The growing sequence of square patterns T,, o < a < 4.

{RG}= . . . .ri 1
i [(d) A set of good reference image pairs {R(9) for square

I " arterns with dferen, scle..
N 1: foreround poents wtth value1

S b: background points with value 0

Figure 2. A symbolic substitution system with p symboicT
sti ional m sFigure 3. A shift and scale invariant pattern recognition of

sutiutonre T.ules.

(W ~ ~ ~ ~ ~ ~ ~~~1 4fa wr, t"" c h rwn euneo square patternsT,0<-i<4



2.2 Digital Optical Cellular Architectures

The papers reprinted in this section discuss details of optical cellular architectures and their in-

struction set.

The DOCIP is a 2-D, page oriented array of individual processors located at every pixel of a

large image. The attached paper by K.S. Huang, B.K. Jenkins and A.A. Sawchuk, "Binary Image

Algebra and Optical Cellular Logic Processor Design", submitted to Computer Vision, Graphics

and Image Processing, summarizes some of these concepts and their algebraic background. Fol-

lowing this paper is "Optical Symbolic Substitution and Pattern Recognition Algorithms Based

on Binary Image Algebra", by K.S. Huang, B.K. Jenkins and A.A. Sawchuk, from the ICO Topi-

cal Meeting on Optical Computing, Toulon, France, 1988, which contains additional information.

This paper is concerned with the hardware implementation of one cell of a prototype digital

optical cellular image processor (DOCIP).

J



Implmentation of
A Prototype Digital Optical Cellular Image Processor (DOCIP)

K. S. Huang, A. A. Sawchuk, B. K. Jenkins, P. Chavel*, J. M. Wang, A. G. Weber, C. H. Wang, 1. Glaser

Signal and Image Processing Institute

Department of Electrical Engineering

University of Southern California

Los Angeles, CA 90089-0272, USA

*Institut d'Optique

Laboratoire Associi au CNRS

Universit6 de Paris Sud

BP43, 91406 Orsay cedex, FRANCE

February 27, 1988

Abstract

A processing element of a prototype digital optYal cellular image processor (DOCIP) is implemented to

demonstrate a particular parallel computing and interconnection architecture.

Submitted to ICO Topical Meeting On Optical Computing, Toulon, France, August 29 - September 2, 1988.
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Summary

Digital optical cellular image processor (DOCIP) architectures, DOCIP-array and DOCIP-hypercube, can perform
the tasks of parallel binary image processing and parallel binary arithmetic [1]. The use of optical interconnections per-
mits a cellular hypercube topol.5gy to be implemented without paying a large penalty in chip area (the cellular hypercube
interconnections are space-invariant which implies relatively low hologram complexity); it also enables images to be input
to and output from the machine in parallel. Table 1 gives a comparison of three different interconnection networks: cel-
lular array (DOCIP-array interconnection network), conventional hypercube, and cellular hypercube (DOCIP-hypercube
interconnection network). In this paper we experimentally demonstrate the concept of the DOCIP architecture by imple-
menting one processing element of a prototype optical computer including a 49-gate processor, an instruction decoder,
and electronic input/output interfaces.

A multiple-exposure multi-facet interconnection hologram provides the fixed interconnections between the outputs
and the inputs of an array of 7 x 7 optical gates. The input data and the instructions are supplied from an LED array.
The outputs of optical gates are detected by a video camera and compared with the results of a software simulation. A
diagram of the main components of this experimental system is shown in Fig. 1.

A space-variant interconnection system [2] for within-processor interconnection is used in this experimental demon-
stration. A computer controlled system is used to make an array of 49 interconnection subholograms. An optical point
source S, whose position is controlled by the mirrot M2 with two rotational stages (Fig. 1), is used to provide an object
beam for determining an interconnection of a subhologram in the multi-facet hologram. A mask with a circular aperture,
controlled by two translational stages, is used to determine the sizes and positions of subholograms in a holographic plate.
The interconnection hologram for this 49-gate optical processing element comprises 49 subholograms, which are laid out
in a 7 x 7 array. Each subhologram covers a circular area with a diameter of 1.5 mm The spacing between the centers
of two subholograms is 3.0 mm. Note that the path of the object beam and the mask for subholograms are only used for
making the interconnection hologram; they are blocked or moved when we reconstruct the hologram to implement the
interconnections of the optical gates. We use a volume phase hologram with a dichromated gelatin medium for obtaining
high diffraction efflciencies.

The array of 7 x 7 optical gates is implemepted by a Hughes liquid-crystal light valve (LCLV) with liquid-crystal
molecules in a 450 twisted nematic configuration [2]. The LCLV is read out between crossed polarizers and is biased to
implement a NOR operation. The gate size in this experiment has a diameter of 0.3 mm and the spacinig between the
centers of two gates is 0.6 mm.

The circuit diagram of the processing element, as shown in Fig. 2, consists of 49 NOR gates with maximum fan-in
of 3 and fan-out of 4. The processing element includes a 3-bit destination selector, a 3-bit master-slave flip-flop memory,
a 6-bit memory selector with a union module, and a 5-bit neighborhood selector (for DOCIP-array4 [1]) with a dilation
module. This experimental DOCIP system has one instruction, supplied from an LED array and decoded by the optical
hardware. This instruction has the format: (c, dt, d2 s, si, sl, .. , sos n2, ... , n s) where c selects the image from the
input or from the feedback, dl,d, and d3 select the destination memory for storing the image; s1,s2,.S select the
output from the memory elements; and ni, n,.... ns control the neighborhood mask, i.e. supply the reference image. We
will experimentally demonstrate the DOCIP architecture concept with this system.
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Table 1. A comparison between three different from the LCLV gate output plane to the hologram plane.
Interconnection networks of NxN processeng Beam Splitter B53 combines the external input signals
elements (PEs): cellular array, conventional from LED array and the feedback signals from initercon-

hypercube and cellular hypercube. When laid out nection hologram. LP1 and LP2 are lens-pinhole
on a VLSI chip, both the conventional hypercube assemblies. P21 and P2 are crossed polanizers. The holo-

and cellular hypercube pay a large penalty in chip gram comprises an array of subholograms. Mirror M2

area while the cellular hypercube has a relatively controls the position of point source S during hologram

low hologram complexity, exposure. After the hologram is made, the mask and all
components In the path from BS1 to the hologram are
not needed.

Figure 2. The circuit diagram of a 49-gate processing element of the DOCIP-array4.



2.6 Parallel Processing and Optical Computing

A third area of research on this grant has been the general investigation of the impact of opti-

cal computing technology on parallel computing architectures, including consideration of SIMD,

MIMD and data flow structures. We have studied the relationship of these architectures at low

to high levels of processor graininess. the following paper "Parallel Processing Paradigms and

Optical Computing" by B.K. Jenkins and A.A. Sawchuk, which appeared in the Proc. Optical

Computing Symposium, SPIE Vol. 625, Los Angeles, January 1986, discusses shared memory

and graph/network models for parallel computing in the context of the physical constraints and

technology of optical computing.
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ABSTRACT

Parallel processing models as computational paradigms are discussed and related to optical computing.
Two classes of parallel computing models are discussed - shared memory models and graph/network models.
These models are used to analyze some of the possible effects of optical technology on parallel computing. It is
found that the use of optics potentially provides certain fundamental advantages. In addition, some factors that
limit the communication capabilities of optical systems in the case of network models are found.

INTRODUCTION
In this paper we look at paradigms and models for parallel processing as an attempt to increase our under-

standing of the role optical computing. Most of the parallel architectures discussed in the parallel processing
community are heavily influenced by the constraints of electronic systems. The purpose of our approach in this
paper is to abstract the notion of parallel computing from the limitations of any given technology. This abstract
model can then be used as a starting point for the design of parallel optical computing architectures. In the pro-
cess, some of the consequences of inherent differences between optical and electronic systems start to become
apparent.

Computing paradigms are important for understanding the level and class of problems that the computer
scientist is addressing. Consider the following structural paradigmatic classification: physical, functional, compu-
tational. A representation and example of each of these paradigms is illustrated in Table 1. Here we are only
concerned with the computational paradigm and the optical implications.

Table 1. Processing paradigm levels

PARADIGMS REPRESENTATION EXAMPLE
Physical Hardware/Technology IC, Board

Functional Architecture PE, Memory,
Interconnection Topology

Computational Algorithms/Metrics Turing Machine,
Automata, Random

Access Machine

Before discussing computational models, both sequential and parallel, we define computational order or
complexity as it is used in this paper. The interest here is in establishing a quantitative measure of the compu-
tational power or cost of a problem, task or algorithm of size n. The parameter n provides a measure of the
difficulty of the problem in the sense that the time required to solve the problem or the storage space required,
or both, will increase as it grows. The measure or cost of running or executing an algorithm on a problem of size
n is defined as the complexity function f . Thus, f is a measure of the time or space required for the execu-
tion of the algorithm. For a time measure, f (n) is called the time complexity function; for a space or storage
measure, f (n) the space complexity function. Unless otherwise denoted the complexity function used in the
paper is the time complexity function.

Our principal concern is with the performance of algorithms for large values of n , i.e. the asymptotic
behavior of complexity function. If the value of n is sufficiently small, then even inefficient algorithms will cost
the same to run. We assume the choice of an algorithm for small problems is not usually critical. The asymp-
totic behavior of is defined as 0 (f ), the order of f . We will not give a formal definition of 0 (f ) but illus-
trate its properties in Table 2. For a formal definition and more extensive discussion of these concepts see

Proc. Optical Computing Symposium, Society of Photo-Optical Instrumentation Engineers '86 Optoelectronics and Laser
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Stanat and McAllister (1977). Table 3 illustrates the growth of certain complexity functions as a function of the
size of the problem (after Stanat and Mc.llister). As one can see, a problem can get out of control rather
quickly for certain orders of complexity.

Table 2. Examples of computation complexity and order.

Complexity f Order O(f)
63 1
50n n

n2+n +100 n2

n log, n n logn

Table 3. Growth of some common complexity functions. The entries are proportional to the time required to
solve a problem of size n.

Problem size n log n n n log n 2 n!
5 3 5 12 25 32 120
10 4 10 33 102 1024 3X 108

102 7 102 664 104 1.3 X 1030 > 101°°

103  10 103  9965 108 > 10100 > 1010o
10 1 14 101 1.4 X105  108 > 1010o > 1010

Computational models are important because they measure the performance of general classes of both
sequential and parallel algorithms on an idealized abstract machine. However, the performance of these models
is highly dependent on the class of algorithms. If the generic class of algorithms is known for a specific problem
(e.g. the communication algorithms of broadcasting, reporting, sorting, etc.), then the compuational model
which efficiently runs these algorithms would be a starting point for the design of a computer architecture that
would do the same. The basic assumption is that algorithms which run well on a computational model should
run well on the model-derived architecture. Our intention is to show that optics has a greater potential than
electronics for physically realizing some of these computational models.

SEQUENTIAL COMPUTATIONAL MODELS
Since parallel computational models are for the most part extensions of sequential models, we briefly dis-

cuss these sequential machines. The most primitive and basic cf the sequential machines is a Turing machine
(TM) of which there exist many forms: universal, non-deterministic, multi-tape, multi-head, 2-D tape, finite state
automata, etc. (A finite state automation (FSA) can be described by a TM in which the tape moves in only one
direction). The universal TM has the capability of computing any algorithm that is computable (a rather circu-
lar thesis since a universal TM defines what is computable). A principal application of the TM is in determining
lower bounds on the space or time necessary to solve algorithmic problems. Since the TM is a well-known com-
putat;onal model, we highly recommend for further interest the very informative text by Minsky (1967).

The Random Access Machine (RAM) is a le-i primitive computational model which can be stylized as a
primitive computer. The RAM model is a one-accumulator computer in which the instructions are not allowed to
modify themselves. Figure 1 illustrates a RAM which consists only of a read-only input tape, a write-only out-
put tape, a program and a memory (Aho, Hopcroft, and Ullman, 1974). Notice the close similarity to a TM. In
fact time on the RAM is bounded above by a polynomial function of time on the TM. In particular, for a TM of
time complexity T(n )>n , a RAM can simulate the TM in 0 (T(n)) or 0 (T (n )logn ) time, depending on the
cost function used for the RAM. For the converse, using a TM to simulate a RAM, the bounds on time required
by the TM are higher and are highly dependent on the RAM cost function used (Aho, Hopcroft, and Ullman,
1974). The program of a RAM is not stored i- memory and is unmodifiable. A sample RAM instruction set is
shown in Table 4. A common RAM model is the uniform cost one, which assumes that each RAM instruction
requires one unit of time and each register one unit of space. It is from attempts to parallelize the RAM compu-
tational model that many parallel computational models emerged.



Table 4. Sample ILAM instruction set. Read-only Input Tape
JGTZ is jump if greater than zero. I '2 '
JZERO is jump if equal to zero. K2

Operation Code Address
1. LOAD operand
2. STORE operand lcuuoo
3. ADD operand
4. SUB operand Progam

5. MULT operand
6. DIV operand
7. READ operand 'Memoy'

8. WRITE operand
9. JUMP label
10. JGTZ label , 3
1 1 . J Z E R O l a b e l V- 2 / I - ....

12. ALLT Wrte-only Outpu Tops

Fig. 1. Random access machine (RAM)

SHARED MEMORY MODELS

We will discuss only two classes of parallel computational models; shared-memory models and
graph/network models. As might be inferred from the shared memory term, these models are based on global
memories and are differentiated by their accessibility to memory. In Fig. 2 we see a typical shared memory
model where individual processing elements (PE's) have variable simultaneous access to an individual memory
cell. (A processing element is a physically isolated computational unit consisting of some local memory and com-
putational power. A PE can be construed as a computational primitive from which more sophisticated architec-
tures can be constructed (Hwang and Briggs, 1984)). Each PE can access any cell of the global memory in unit
time. In addition, many PE's can access many different cells of the global memory simultaneously. In the
models we discuss, each PE is a slightly modified RAM without the input and output tapes, and with a modified
instruction set to permit access to the global memory. A separate input for the machine is provided. A given
processor can generally not access the local memory of other processors.

shared

PE

nwmnory P

Fig. 3. One memory cell (or pixel) of an array,
showing multiple optical beams providing

Fig. 2. Conceptual diagram of shared memory models, contention-free read access.

The models differ primarily in whether they allow simultaneous reads and/or writes to the same memory
cell. The PRAC, parallel random access computer (Lev, Pippenger and Valiant, 1981) does not allow simultane-
ous reading or writing to an individual memory cell. The PRAM, parallel random access machine, (Fortune and
Wyllie, 1978) permits simultaneous reads but not simultaneous writes to an individual memory cell. The
WRAM, parallel write random access machine, denotes a variety of models that permit simultaneous reads and
certain writes, but differ in how the write conflicts are resolved. For example, a model by Shiloach and Vishkin
(1981) allows a simultaneous write only if all processors are trying to write the same value. The paracomputer
(Schwartz, 1980) has simultaneous writes but only "some" of all the information written to the cell is recorded.
The models represent a hierarchy of time complexity given by



T PRAC > T PRAM > T wrt

where T is the minimum number of parallel time steps required to execute an algorithm on each model. More
detailed comparisons are dependent on the algorithm (Borodin and Hopcroft, 1985).

Implications of optics

In general, none of these shared memory are physically realizable because of actual fan-in limitations.
Optical interconnections permit greater fan-in than electronic systems. In addition, the non-interacting property
of photons in a linear medium (versus the mutual interaction of electrons) may permit simultaneous memory
reads much more easily. As an electronic example, the ultracomputer (Schwartz, 1980) is an architectural man-
ifestation of the paracomputer that uses a hardwired Omega network between the PE's and memories; it simu-
lates the paracomputer within a time penalty of 0 (logn).

Optical systems could in principle be used to implement this parallel memory read capability. As a simple
example, a single 1-bit memory cell can be represented by one pixel of an array; the bit could be represented by
the state (opaque or transparent) of the memory cell. Many optical beams could simultaneously read the con-
tents of this memory cell without contention (Fig. 3). In addition to this an interconnection network is needed
between the PE's and the memory, that can allow any PE to communicate with any memory cell, preferably in
one step, and with no contention. A crossbar is not sufficient for this because fan-in to a given memory cell
must be allowed. Optical systems can potentially implement crossbars that also allow this fan-in. For example,
some of the optical crossbar designs discussed in Sawchuk and Jenkins (1986) can include fan-in capability.

GRAPH/NETWORK MODELS

Graph/network models are characterized by a collection of usually identical PE's that are interconnected
with a fixed network. They can be represented by graphs, with a node of the graph for each PE and an arc or
link of the graph for each PE to PE interconnection. The models differ from one another in the length of time
required for a message to traverse one arc of the graph, and on the assumptions placed on the PE's such as their
ability to respond to multiple messages. The feasibility of implementation of these models depends on the con-
nectivity of the graph; if the connectivity is not too high, the model is much more readily implemented than the
shared memory models.

Network models can be compared to shared memory models. Any of the shared memory models can
efficiently simulate (in 0 (1) time) a network model. This is done by dedicating a different cell of the global
memory for each link of the network. One PE sends a message to another by writing the message to a memory
cell which the other PE then reads. Conversely, suppose the network model is capable of (partial) routing in
r (n) time. Then it can simulate one step of the PRAC, PRAM, or WRAM in 0 (r (n)) time (Borodin and Hop-
croft, 1985).

In a highly parallel machine communications are exceedingly important and for many tasks can dominate
the execution time of the algorithm. We therefore concentrate on communications in our analysis of these
models. The effectiveness of different PE network topologies can be evaluated by comparing metrics, essentially
measures of the topological characteristics, or by comparing the number of time steps required to complete vari-
ous fund-.mental communication tasks or algorithms. Examples of metrics include diameter, 'the shortest dis-
tance between the two most separated nodes where distance is measured in terms of number of links, and
bandwidth, the maximum number of messages that can be simultaneously sent over the network in one time
step. Levitan (1985) compared different architectures based on network models using both metrics and commun-
ication tasks, and concluded that communication tasks are a better predictor of actual run time performance on
a given topology than are metrics. In our analysis we will use communication tasks.

PE Complexity and Communications
Since the performance of network models depends on the assumptions on the individual processing ele-

ments, we need to consider these assumptions and their relationships to communication tasks. We will show
that in general the communications between PE's (or the network topology) cannot be completely decoupled
from the hardware complexity of the PE's themselves. After giving a relationship between PE space complexity
and interconnection capability, we will be able to identify what reasonable assumptions on the PE complexity
are for the optics and electronics cases. These assumptions will be used in assessing the performance of different
communication tasks on network models. In this paper the term PE complexity refers to the space complexity
of each PE. We will not discuss time complexity of individual PE's.



For simplicity, we will assume the bandwidth of each 1/O line to a PE is fixed and is given. Thus we are a
priori not considering one of the potential advantages of an optical system over an electronic one. We will, how-
ever, consider the effect of the number of I/O lines to a PE. In the case of input lines, the signals coming in
may be immediately combined, or may be kept separate and stored into separate registers. Consider the former
case. Examples include forming the sum of all simultaneous inputs or just forming the logical AND over all of
them. In the simplest case of a logical operation over all inputs, the PE must accommodate the required fan-in.
To do this with gates of a fixed size (fixed fan-in per gate) requires 0 (4i) gates for i input lines. Thus the PE
complexity grows 0 (4i) merely to accommodate the input lines. If the input gates are allowed to have a fan-in
that increases with I, then the PE complexity still grows with 1i because the complexity of the input gates
(instead of the number of input gates) grows 0 ( i ). In the case of the PE keeping the input, signals separate,
0 (I) gates are needed for the input, and if stored into memory then I4 memory cells are required. Thus the PE
complexity must be at least 0 (i); if the PE can arbitrarily rearrange the signals in a small number of time
steps then the PE complexity grows even faster (e.g., 0 (42) if a crossbar is used). Similar arguments can be
applied to the case of PE output lines. Thus a PE with i input lines and 1, output lines has complexity that
grows 0 (I +1o ) in the simpler cases; if too many demands are placed on its ability to process or move these sig-
nals around, then its complexity grows faster.

Implications of this lie in the communication ability of PE networks, particularly in the optics case. With
electronic technology, the number of I/O lines to a PE is generally quite limited and this limits the ability of the
PE's to communicate. This is due to limited pinout, cost of interconnections, etc. The PE complexity is in
practice not an issue for communications. In the optics case, however, there are no pinout restrictions and many
parallel interconnection lines are feasible. However, there are limitations on the total number of interconnec-
tions in an optical PE network; these are due to the PE complexity itself. In other w'ords, the PE's have to be
able to accommodate all of the I/O lines. The optics case apparently allows a balance between the interconnec-
tions and the PE complexity; in the electronics case the interconnections are further limited by technology fac-
tors.

Consider a fully connected array, that is one in which every PE has a hardwired line to every other PE.
For a network of N PE's, the complexity of each PE grows 0 (N) because it has N I/O lines; therefore the
total complexity of all the PE's is 0 (N 2 ). In this case the total number of interconnection lines is also 0 (N 2).
The total complexity of the PE network is 0 (N 2).

We consider three specific examples of PE complexity in the case of a fully connected array.
Example 1. The PE's are made up of binary gates, either optical or electronic. This example was

included in the discussion above; each PE has 0 (N) gates and has complexity that grows 0 (N) in the simplest
cases.

NxN

Fig. 4. Optical inner product matrix-vector multiplier as an example of a fully connected array.

Example 2. Consider the optical matrix-vector multiplier of Fig. 4. This is also a fully connected array,
because in general every input or source is connected to every output or detector. Thus we expect each "PE" to
have complexity at least 0 (N). Each PE can be viewed as a detector, any thresholding, A/D, or processing
electronics, and a source (which is part of the same PE if feedback is included). The 2-D SLM or mask is con-
sidered part of the interconnections in this case. Even for the simple case of binary sources and mask transmit-
tances, each detector must distinguish 0 (N) levels. In addition, there are accuracy requirements on the source
intensities for these levels to be distinguishable. We conjecture that the PE complexity must increase at least
0 (N). This is clear if we assume that the ability to distinguish an analog signal to within I part in N implies
a complexity of 0 (N). Thus the total complexity of all PE's in the network must grow at least 0 (N 2).



Example 3. Consider again the optical matrix-vector multiplier, but now define each PE to include the
multiplies also. Each PE is physically distributed, and includes N mask pixels (shown), I detector (shown), and
I source. There are N PE's; each PE performs N multiplies and N adds, and has N spatially separate input
lines (at the 2-D mask). The network is still fully connected, as each source (PE output) fans out to all PE's. In
this case, the accuracy requirements on the sources, detectors and ensuing electronics are the same as in the pre-
vious example. In addition to this the accuracy of each multiply (the pixel transmittance) must be taken into
account; one PE contains N of these multiplies and the accuracy (and therefore the complexity) of each multi-
ply must increase with N. Thus the complexity of each-PE must increase faster than 0 (N); the complexity of
the network grows faster than 0 (N 2 ). This is reflected in the hardware requirements in making a large fully
connected (optical) system.

Communication Tasks on Network Models

In this section we will give the time required to execute different communication tasks on different network
topologies. We are concerned with fine-grained systems, that is systems with a large or very large number of
relatively simple PE's. As a minimum, we assume each PE can store its own address so that it knows where it is
located. Many algorithms can become quite difficult without this feature. This implies that the PE complexity
must be allowed to grow 0 (logN).

In an electronic system, the number and length of interconnections is important and ideally should be
minimized. The number of connections to each PE or node of the graph is limited to small values due to I/O
constraints. This limits the connectivity of graphs that can be efficiently implemented. The degree of a graph is
the number lines connected to each node. Electronic systems limit the degree of the graph to a relatively small
value; for large enough N the degree must be a constant, independent of N.

Optical systems have no I/O restrictions on the PE's per 8e, but as discussed above the degree of the graph
will be limited by the complexity of the PE's. Since the PE complexity must be at least 0 (logN) anyway, in
the optics case the degree of the graph can easily be 0 (logN). Larger degrees, e.g. 0 (N" i P ), where p !2 may
also be feasible.

The time required for different interprocessor communication tasks performed on different fixed networks
has been studied by Kushner and Rosenfeld (1983) and Levitan (1985). They show substantially reduced compu-
tation time for many communication tasks on networks of larger degree (e.g. hypercubes), as compared to
simpler networks such as arrays. Augmented trees (Uhr, 1983) and bushy trees may also permit reduced time
for these tasks. Examples of bushy trees are trees of degree 1+m l/p, which have diameter 2p, where m is the
number of leaf nodes and is a power of p.

In order to calculate communication times on a network model, certain assumptions need to be specified.
We assume that all messages are the same size and are routed to their destinations over the fixed connection net-
work by passing over links and through PE's. One time step is defined as the time for a PE to send a message,
the message to travel over one link, be received by the PE at the end of the link, and for the PE to perform any
computation on the message (such as altering its tag or combining messages that arrive simultaneously). The

"3 processors operate synchronously. Finally, the number of messages that can simultaneously be accepted or out-
put by each PE must be considered. In the electronics case, the number of messages that can be simultaneously
accepted by a PE is relatively small (because of the degree limitation), and will probably need to be a constant
independent of N (Kushner and Rosenfeld, 1983). For simplicity this can be taken to be 1. A PE can output
identical copies of the same message, but not multiple messages. For the optics case, we assume only a limit on
the PE complexity; this then dictates how flexible the inputs and outputs of the PE can be. We limit the PE
complexity to the degree of the network or logN, whichever is greater. Each PE can accept d simultaneous
messages, where d is the degree of the network, and may increase with N. Each PE can output d identical
messages simultaneously; outputting different messages simultaneously (in conjunction with inputing several
messages simultaneously) can involve an increase in PE complexity, depending on what the PE is required to do.

Kushner and Rosenfeld (1983) classify communication tasks as one-to-many, many-to-one, and one-to-one.
One to many tasks include broadcasting, in which one PE (the root if there is a node so distinguished) sends the
same message to many other PE's, in the worst case to all other PE's. In the more general one-to-one case the
messages may be altered as they travel, e.g. each message could have a value that is incremented by one each
time it passes through a PE; thus it keeps track of the distance it has traveled. Broadcasting must take time at
least as long as the distance to the farthest node to be reached.

Many to one tasks must be divided into two classes. In both classes many PE's all send messages to the
same PE (root). In one case, condensing, the messages can be combined (e.g. added) in route to the destination.
An example of this would be for computing the area of a region - each PE in the region sends a 1, and the sum
of all messages is equal to the area. This is essentially the inverse of broadcasting, and the time is again limited



by the farthest distance to be traveled. In the case of funneling, the messages must be kept separate. This in
general takes much longer. If all N PE's send messages to be funneled, then the time is bounded below by
N /d , where d is the network degree, because of the "bottleneck" at the destination node. Whether this lower
bound is achieved depends on the network topology.

One to one tasks are permutations, in which each PE sends a message to one other PE. In the worst case,
half the PE's send messages to the other half, each message with a different destination PE. This of course must
take time at least equal to the farthest distance to be traveled (the diameter of the network for the worst case).
In general, bottlenecks will cause the time to be larger than the network diameter; actual time again depends on
the topology.

Table 5. Order of magnitude time for communication tasks on a fixed interconnection PE network with N PE's.

Broadcasting
Network Complexity and
Topology Degree of each PE Condensing Permuting Funneling

Array (nearest 4 logN v' (N N? 1 N (
neighbor)

Tree 3 logN logN ) N { N )

Htypercube log N logN logN ('1 logN ( N j
,log N

Tree (2
) 1+b =N"/ P  N' / P  log b N N1- 1 P (3) N' 1 '/ (4)

Fully connected N N 1 1(4

(1) From Kushner and Rosenfeld (1983).
(2) b = branching factor of tree = mn/P, where m = no. of leaf nodes. p = radius = no. of levels - 1.

p>l.
(3) Allowing the root node to have complexity 0 (N 2/p ).
(4) Could be higher depending on algorithm requirements

test- Ne~g Ary Binary T

Fully Coo'wwctd
4-Cub

Fig. 5. Examples of network topologies.

The worst case order of magnitude communication time for several networks of different topologies and
degrees is given in Table 5. The array and binary tree take the same time under our optics and electronics
assumptions. The optics assumptions allow degrees that are a function of N, and further reduce the time for
funnelling (from time =N) in some cases. Examples of nearest neighbor array, tree, hypercube, and fully con-
nected networks are shown in Fig. 5.



CONCLUSIONS

We have studied abstract models of parallel machines at the computational paradigm level. By attempting
to abstract out the limitations of electronic systems, we have found some potential advantages of optical com-
puting systems in contention-free parallel read access to global memories, associated reconfigurable interconnec-
tion networks, and in implementing PE networks of increased degree over electronics. We have also pointed
out that the connectivity of even optical systems is not unlimited; it is limited by the complexity of the com-
ponents that are being connected.
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2.7 Acousto-optic Signal Processing

A final area of study has been in high speed acousto-optic systems for matrix-matrix multi-

plication. The attached paper "Acousto-Optic Matrix-Matrix Multiplier" by D.S. Kalivas, G.

Albanese and A.A. Sawchuk in Optics Letters, Vol. 13, pp. 291-293, April 1988 summarizes

these results.

I 1



Reprinted from Optics Letters, Vol. 13, page 291, April 1988.
Copyright ( 1988 by the Optical Society of America and reprinted by permission of the copyright owner.

Acousto-optic matrix-matrix multiplier
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A new architecture for an optical matrix-matrix multiplier is presented. It is based on the beam-modulation and
beam-deflection properties of Bragg acousto-optic cells. Its parallel structure makes it very fast. Some physical
limitations are discussed.

There exist many architectures for optical matrix alge- independent AO cells. The direction of propagation
braic processors.' Recently, several architectures of the acoustic waves in each AO cell is oriented verti-
that use acousto-optic cells have been proposed:2,3 An cally. The N cells are arranged side by side horizon-
interesting frequency-multiplexed pipelined matrix- tally. The illumination on AO cell array A shown by
vector processor was presented by Casasent et al.4  the arrows at the left of Fig. I is a plane monochromat-
This system is a systolic processor because the inputs ic wave of constant complex amplitude. The plane
enter in a clocked time-sequential pipeline manner. wave front is parallel to the left of the AO cell array A,
It is a beam-deflector-based processor, which can also and its aperture is large enough to illuminate array A
be used for matrix-matrix multiplication. In this completely. Each row of the matrix A drives in paral-
Letter we present a matrix-matrix multiplier that lel each cell of AO cell array A (plane A). The single
makes use of both the beam-deflection and the beam- long AO cell B (plane B) in Fig. 1 is oriented vertically.
modulation properties of acousto-optic (AO) cells. It is shown artificially divided into N levels in Fig. I for
We describe the architecture of the processor and ex- the purpose of explaining the operation of the proces-
plain how it works and consider some basic features sor. The AO cell B is driven by a vector b generated
and limitations from a quantitative point of view. by row scanning7 the matrix B. Let us call bij (i = 1,

Bragg cells have two basic properties that can be 2,..., N;j = 1, 2, ... , N) the elements of the matrix B.
utilized in the design of an AO algebraic processor.5.6  Then b is equal to the vector (b1 , b12,. . -. , b21 .....
The first is the modulation of the intensity of a light b2N..... bNl .... bNN) t , where t denotes the matrix
beam, which is obtained by modulation of the ampli- transpose. In the illustrations of Figs. 1 and 2, both
tude of the acoustic wave. The second property is the lenses have the same focal length (L, and all five com-
deflection of light beams in different directions caused ponents of the system are spaced at the same distance
by frequency modulation of the acoustic wave. Our fL. The lens located between planes A and B brings

' processor exploits both properties. the light from plane A to a line focus in plane B (Fig.
The architecture is shown schematically in Fig. 1, 2), and the AO cells in plane A provide a vertical

and a top view is shown in Fig. 2. It multiplies two deflection and amplitude modulation. At the right is
matrices A and B of dimension N X N. Various stops an instantaneous detector array C having N X N ele-
and unwanted diffraction orders are omitted for clar- ments, which gives the output matrix C = A X B.
ity. At the left is AO cell array A, composed of N In each AO cell of the array A a transducer launches

plane A plane 8

0i/a (f fk

0 , ;j ( I b i ( f i k )

AO cell array A lens AO cell B lens detector array C

Fig. 1. Side view of the processor.
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AO cell array A lens AO cell E3 lens detector array C

Fig. 2. Top view of the processor.

a multifrequency acoustic wave. Let us consider the jth AO cell is driven by the jth row of the B matrix
ith AO cell, which is fed with the ith row of the matrix (bl -. . . . . bj . . . . . bIN). The new total processing time
A. Its input has N frequency components. The jth is equal to TIN. This time reduction is achieved at
component has amplitude aj and frequency fj. Thus the cost of increased architectural complexity.
the beam incident upon this cell is split into N beams. The AO cells described above serve as light modula-
These beams have intensities proportional to the ma- tors and beam deflectors. The equations that deter-
trix elements a, (j 1=  , 2,.... , N) and are deflected at mine these two operations are6

different angles Oj, which are proportional to the fre- (
quencies f,. The frequency /i is such that the de- = sin2  M(
flected beam is directed to the jth level of the AO cell x cos OB
B.

At this jth level of AO cell B there are N incident where i? is the diffraction efficiency, L is the length of
beams from each of the N AO cells of array A. Syn- interaction between light and sound (i.e., the thick-
chronized with these beams, AO cell B contains a ness of the AO cell along the direction of light propaga-
propagating multifrequency acoustic wave with am-prpliudes b3 (k 1,2,., n) anfrunciwaves with a- tion), X is the wavelength of light in free space, I. is the
plitudes b (k =i 1, 2_ .... N) and frequencies f ik (k = 1, acoustic intensity, M is a constant having dimensions
2, .. , N). Each one of these incident beams is split of square meters per watt defined by the AO cell mate-
into N beams having intensities proportional to aijbk rial, and B is the Bragg angle given by
(k = 1, 2, .. . , N) and is deflected at different angles Ok i
determined by the frequencies fik (k = 1, 2, ... , N). (Xfo
The frequency fjk is such that the corresponding de- OB = sin- 2nu) (2)

flected beam is directed vertically from the jth level of

AO cell B toward the kth row of the detector array. Here to is the acoustic frequency, u is the phase veloci-
The horizontal angular offset of this beam is converted ty of the sound, and n is the optical index of refraction
by the second lens to a spatial location in the ith of the AO cell material. Assuming small acousticcolumn. Thus the combination of these two deflec-tiolun. dir s the bea tio n he (, theeetofete- power and a small Bragg angle, we can further simplifytions directs the beam to the (i, k)th element of the the above equations to
detector array. At the same element (i, k) all the t bio
beams having intensities proportional to aijbjk (j = 1, ir2L2MI
2,..., N) are summed and detected. The result is (3)
proportional to the element cjk of the matrix C. 2X2 c Os 2 OB

We denote by T the time it takes for the elements of
matrix B to enter AO cell B. After matrix B enters the
system, the matrix-matrix multiplication is done in- plane B

stantaneously; thus the total processing time is equal
to T. The equivalent systolic matrix-matrix proces- ,( fN,,"'
sor, presented by Casasent et al.,3 has a total process-
ing time equal to 2T.

The processing time can be drastically reduced if an
array of AO cells as shown in Fig. 3 is substituted for
the single long AO cell B. AO cell array B is composed bm... ,.
of N independent AO cells whose direction of propaga-
tion is oriented vertically, and these N cells are
stacked end to end vertically. Each AO cell of array B ;)
is driven in parallel by the corresponding row of the ... ) ...

matrix B, thus eliminating the row scanning needed to AO cell array B
input the entire matrix B as before. For example, the Fig. 3. AO cell array B.
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10- 14 m 2/W. Choosing X = 0.5145 tm, f) = 100 MHz,
[ . (4) Af = 100 MHz, ,, = 250 mW/cm 2, L = 1 cm, and D = 3

mm, we obtain N = 60, T = 60 psec, and 1 = 0.34. If we

From relation (3) we see that the diffraction efficiency use instead the AO cell array B shown in Fig. 3 in the
is approximately linearly proportional to the acoustic system of Fig. 1, the computation time is 1 usec.
intensity 1. Thus modulation of the acoustic intensi- These results show that the processor is very fast and
ty results in modulation of the diffracted light intensi- operates with acceptable efficiency.
ty. Also, relation (4) shows that the deflection angle A final consideration concerns the phase mismatch
20B is approximately linearly proportional to the of the AO cells. We have assumed that the beams
acoustic frequency. incident upon the cells arrive at the correct angle for

The most important parameters in this processor Bragg diffraction. While this is true for AO cell array
are the number of resolvable beam spots, or, in other A (Fig. 1), it is not generally true for AO cell B. In
words, the dimension of the matrices that can be mul- fact, the beams incident upon cell B necessarily arrive
tiplied and the computation time T. In addition, the at different angles because they are the output beams
processor must operate with acceptable efficiency. of the AO cell array A and cannot arrive at the correct

The number of resolvable beam spots is given by6  Bragg angle. This phase mismatch results in a de-
crease in the number of resolvable spots, although it

N - rDAf (5) may be possible to reduce the effects of the phase
4u cos 0B mismatch by the use of correcting lenses or lens arrays.

In this Letter we have presented a matrix-matrix
where Af is the bandwidth of the acoustic wave around multiplier. Its operation is based on the modulation
the center frequency [o and D is the diameter of the and deflection properties of AO cells. It is fast be-
illuminating beam measured along the direction of cause of its parallel architecture. The dimension of
acoustic-wave propagation. Thus the basic parame- the matrices that it can multiply is sufficiently large.
ter that determines the dimension N is A[, and it must This processor can be used for implementations of
satisfy the two conditions 6  algorithms that require matrix-matrix multiplica-

tions such as LU decomposition, QR decomposition,
Af < fo, (6) direct solution of linear equations, and Kalman filter-

2nu
2  ing.3
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